
Sitecore 7.5
xDB™ Configuration Guide Rev: 9 April 2015

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore 7.5

xDB™ Configuration Guide
Configuration guide for Sitecore administrators and developers

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 2 of 57

Table of Contents

Chapter 1 Introduction .. 3
1.1 Architecture Options .. 4

1.1.1 On-Premise Server Solutions .. 4
1.1.2 Hybrid Server Solutions .. 5
1.1.3 Cloud Server Solutions ... 5

Chapter 2 Standard Configuration ... 6
2.1 Hardware Guidelines ... 7

2.1.1 Hardware Configuration Example from Sitecore.net... 7
2.2 Software Recommendations ... 10
2.3 Installation ... 11

2.3.1 Install Sitecore CMS .. 11
2.3.2 Install Microsoft SQL Server ... 11
2.3.3 Install MongoDB .. 11

2.4 Configuring Connection Strings .. 14
2.4.1 Verifying a Connection to the Collection Database ... 17

2.5 Server Configuration ... 22
2.5.1 Server Features ... 22
2.5.2 Server Configuration Examples .. 24

2.6 Session State .. 33
2.6.1 In Process ... 33
2.6.2 Out of Process ... 33
2.6.3 Session State Configuration Scenarios .. 33

2.7 Configuring Private Session State .. 35
2.7.1 Configuring the MongoDB Session State Provider ... 35
2.7.2 Configuring the SQL Server Session State Provider .. 37

2.8 Configuring Shared Session State .. 39
2.8.1 Configuring the MongoDB Session State Provider ... 39
2.8.2 Configuring the SQL Server Session State Provider .. 41

2.9 Clustered Environment Overview.. 43
Chapter 3 Cloud Configuration Options ... 44

3.1 Cloud Server Solutions ... 45
Chapter 4 Customization .. 46

4.1 Creating a Custom Aggregation .. 47
4.2 Fact and Dimension Tables .. 48

4.2.1 Creating Fact Tables ... 48
4.2.2 Creating Dimension Tables ... 49

4.3 Implementing Model Classes .. 50
4.4 Implementing the Aggregation Processor ... 52
4.5 Example Custom Aggregation .. 53

4.5.1 Overview ... 53
4.5.2 Create a Rate Page Event .. 54
4.5.3 Create a Fact Table .. 54
4.5.4 Create Fact and Dimension Model Classes .. 55
4.5.5 Implementing the Aggregation Processor ... 55
4.5.6 Registering your Custom Aggregation .. 57

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 3 of 57

Chapter 1

Introduction

The Sitecore® Experience Database™ (xDB™) collects all online and offline customer interactions
from all channel sources in a real-time big data repository. It connects interaction data to create a
comprehensive, unified view of each individual customer, and makes the data available to marketers
to manage the customer experience in real time.

This document provides guidance on common configuration tasks for administrators or developers
when setting up the xDB for the first time.

This guide contains the following chapters:

 Introduction

 Standard Configuration

 Cloud Configuration Options

 Customization

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 4 of 57

1.1 Architecture Options

When you install the Sitecore® Experience Platform™ (Sitecore® XP) with the xDB for the first time
there are several different architecture options that you can choose from. The most common
scenarios are outlined below:

1.1.1 On-Premise Server Solutions

All xDB components, such as Sitecore application servers and MongoDB are installed on the
customer’s own servers. There are two ways in which you can install an on-premise Sitecore solution:

 Single server standalone environment (not scalable). All components installed on a single
server computer.

 Multi-server scalable environment (fully scalable). A multi-server environment consists of
dedicated servers for each Sitecore component. For example, content delivery, content
management, collection database, session state, reporting service, reporting database and
processing servers. You also have the option of expanding this to handle big data by
implementing vertical and horizontal scaling.

Note
Only install a standalone environment for development or testing purposes. For a production
environment we do not recommend that you install all xDB components together on a single server.

Advantages and disadvantages of on-premise Sitecore server solutions:

Advantages Disadvantages

More control

Unlimited configuration options.

Potentially unlimited hard disk space
depending on budget.

Easier to choose whether to use SSD or
HDD drives.

Complicated hardware setup.

Costly to create and maintain.

Time consuming to administer.

Costly and time consuming to expand/upgrade
and scale storage.

Requires multiple data centers for
geographically distributed failure zones. This is
much easier and cheaper to achieve with the
public cloud.

Whether you choose to run Sitecore in the cloud, as an on-premise solution or a hybrid solution
depends on the type and size of organization. For example, a small organization may only need a few
servers and therefore can use a public cloud solution whereas a larger enterprise organization may
have its own data center.

Note
Public cloud providers can also offer unlimited disk space. The limitation in both cases is the budget. It
is much easier and faster to scale storage in the public cloud than within your own premises.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 5 of 57

1.1.2 Hybrid Server Solutions

In a hybrid solution some components are installed as part of an on-premise solution while others are
installed in the cloud.

For example:

 Multi-server scalable Sitecore environment installed as an on-premise solution (see the
previous section for more details). This can include content delivery, content management,
processing, reporting service and reporting database servers installed as an on-premise
solution at an organization’s own data center.

 MongoDB server installed in the cloud using Sitecore xDB Cloud Edition (see the next section
for details).

Advantages and disadvantages of hybrid solutions:

Advantages Disadvantages

Hosting MongoDB in the cloud removes the
need for specialist MongoDB knowledge
and expertise. Therefore no new staff or
training is required.

Ease of maintenance and upgrade.

You have less control over scaling the
collection database to handle large numbers of
contacts and visits.

There may be limitations when using MongoDB
with some private cloud solutions. For example,
a limited amount of data storage.

1.1.3 Cloud Server Solutions

In a full-scale cloud solution all Sitecore components are installed in the cloud.

For example:

 Fully scalable cloud environment – this includes all Sitecore xDB components, such as
content delivery, content management, processing, reporting service, reporting database,
session state and MongoDB (collection database).

Advantages and disadvantages of cloud solutions:

Advantages Disadvantages

Simplifies installation and configuration.

Less specialist knowledge is needed.

Data centers can be distributed in remote
locations around the globe ensuring high
availability.

Backup is done for you.

You don’t need to manage scalability.

Security. You can spread data across
multiple locations.

Cost.

Less control - You have less control over the
hardware you use and how you handle
scalability.

It may not suit very large organizations which
have their own data centers to have all their
servers hosted in the cloud. Then a hybrid
solution may be a good option.

For more information on architecture see the xDB Overview and Architecture document.

For more information on Cloud options, see xDB Cloud Quick Start Guide on SDN or contact your
local Sitecore office.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 6 of 57

Chapter 2

Standard Configuration

This chapter covers all the basic steps and guidance you need when setting up the
Sitecore Experience Platform as an on-premise solution for the first time.

This chapter contains the following sections:

 Hardware Guidelines

 Software Recommendations

 Installation

 Configuring Connection Strings

 Server Configuration

 Session State

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 7 of 57

2.1 Hardware Guidelines

When you install Sitecore xDB™ as an entirely on-premise solution you need to consider the
minimum hardware requirements for each instance in your environment depending on the roles you
have allocated to each server.

Content Management and Content Delivery Servers

The requirements for the content management and content delivery servers have not changed.

For more information on specific requirements, see the Sitecore CMS 7.5 Installation Guide on SDN.

Session State Server

The hardware requirements for the session state server depend on which session state service you
choose to use. If you choose to install a session state server with the xDB, you can configure this to
use a MongoDB database.

We recommend you use a fast network, solid-state drive (SSD) on your session state server and
plenty of RAM.

For more information on these requirements, see the MongoDB installation guide on the MongoDB
website: MongoDB installation guides

Collection Database Server

Using MongoDB as your collection database, we recommend that you install plenty of RAM and use
SSD drives. Sharding can also improve performance significantly.

For more information on MongoDB architecture, replication and configuration options, see the
MongoDB documentation on the MongoDB website, the xDB Configuration Guide and the xDB
Overview and Architecture document.

Processing and Aggregation Server

Processing and aggregation servers can use RAM for caching and for establishing a fast connection
to the databases. The more cores the CPU has, the more agents you can configure to run in parallel.

Reporting Server

The reporting server has the same requirements that the analytics database server had in previous
versions of Sitecore. There are no significant changes compared to Sitecore CMS and DMS 7.1.

Better optimization of the reporting database means it now uses memory more efficiently. However,
install fast hard drives and plenty of RAM to achieve the best performance.

For more detailed information, see Microsoft SQL Server documentation on MSDN.

2.1.1 Hardware Configuration Example from Sitecore.net

The following hardware example setup described in this section was implemented on the Sitecore.net
website when setting up the xDB for the first time. There are many alternative ways of installing and
configuring Sitecore xDB and this is just one example.

Important Note
The hardware details outlined in this section are an example. They are not a set of recommendations
to follow.

You can use the information in this section to get an idea of what you might need to consider when
setting up the xDB for the first time.

http://docs.mongodb.org/manual/installation/

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 8 of 57

Example Hardware Configuration (Sitecore.net):

Server type CPU RAM Disk

Content delivery

4 x CPU E5 2650 v2
processors with the
more cores the better.

16 GB (including the
operating system).

HDD 40 GB per
instance.

Processing

4 x CPU E5 2650 v2
processors with the
more cores the better.

16 GB (including the
operating system).

HDD 40 GB per
instance.

Content management

4 x CPU E5 2650 v2
processors with the
more cores the better.

16 GB (including the
operating system).

HDD 40 GB per
instance.

Session state
(MongoDB)

4 x CPU E5 2650 v2
processors.

4 GB
The more the better.

SSD shares hard disk
with the collection
database, ideally the
hard disk capacity
should not be more
than the RAM which is
4GB in this example.

2 x collection
(MongoDB) servers

4 x CPU E5 2650 v2
processors.

16 GB
The more the better.

100 GB + SSD
The more disk space
you have, the more
data you can store.

Reporting database
server (SQL Server)

4 x CPU E5 2650 v2
processors.

16 GB
The more the better.

100 GB + SSD
The more the better.

HDD = hard disk drive

SSD = solid state drive

RAM

Operating System

Include the Windows operating system (OS) in the RAM usage because it is difficult to predict
accurately how much RAM the Windows OS will consume.

Session

The more RAM you have, the more sessions you can track simultaneously without using extra disk
space. Actual performance though depends on the specific configuration you have. Disk I/O on reads
should be avoided.

Session database

The session database should ideally fit 100% into RAM, otherwise it gets too slow.

Collection database (MongoDB)

RAM serves as disk cache. You need at least enough RAM to store working set size (MongoDB has
instructions on how to estimate these, Microsoft SQL Server also provides this information).

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 9 of 57

Hard Disk

In general, the more disk space you have, the more data you can store.

Note
These example recommendations aim for achieving the best performance possible but have not been
tested for every possible scenario. Where we say, “the more the better”, this means that you need to
perform tests to find out what suits your system best.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 10 of 57

2.2 Software Recommendations

For each xDB server instance that you install you need the following minimum software prerequisites:

 Microsoft .NET Framework 4.5.

 Windows Server 2012 R2 – recommended for most Sitecore instances, especially
processing/aggregation servers.

 MongoDB 2.6.1 or later for the collection database, session storage and tracking databases.
Install MongoDB on Microsoft Windows Server as a Windows service.

 Microsoft SQL Server 2008 R2 SP1 or higher for the reporting database.

For more detailed information on the specific software requirements for standard Sitecore CMS
instances, see the Sitecore CMS 7.5 Installation Guide on the Sitecore Developer Network (SDN).

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 11 of 57

2.3 Installation

This section provides general guidance for administrators on installing the Sitecore Experience
Database (xDB) with MongoDB for the first time.

For a complete set of steps and more information, see the Sitecore 7.5 Installation Guide on SDN.

2.3.1 Install Sitecore CMS

You can install Sitecore CMS using the Sitecore installation program or install it manually from a .ZIP
archive. The installation program automatically installs a Sitecore client and databases. It does not
install the MongoDB collection database as part of the installation.

Note
When you open Sitecore for the first time you may get an error if you have not updated the

ConnectionStrings.config file to point to the collection database (MongoDB). In the connection

strings configuration file the collection database has the name analytics.

For more information on configuring connection strings, see the section Configuring Connection
Strings.

For complete instructions on installing Sitecore CMS, see the Sitecore 7.5 Installation Guide on SDN.

2.3.2 Install Microsoft SQL Server

Install Microsoft SQL Server 2008 R2 SP1 or higher and SQL Server Management Studio.

For more detailed information on installing SQL Server, see the Sitecore 7.5 Installation Guide on
SDN and Microsoft SQL Server installation instructions on MSDN.

2.3.3 Install MongoDB

Install MongoDB as your NoSQL database server.

MongoDB Considerations

Before you start installing a MongoDB database you should consider the following:

 Decide whether you want a public cloud-based solution such as Windows Azure or one within
your own data center on either physical or virtual hosts.

http://docs.mongodb.org/manual/faq/fundamentals/

 Ensure that the MongoDB working set fits in memory for optimal performance. This is usually
the most important performance scale up factor, followed by disk and CPU.

http://docs.mongodb.org/manual/faq/storage/#what-is-the-working-set

http://docs.mongodb.org/manual/faq/diagnostics/#how-do-i-calculate-how-much-ram-i-need-for-my-
application

 Selecting hard disks – use solid-state drives (SSD) for fast reads and writes or hard disk
drives (HDD) for larger capacities at lower cost. SSDs are recommended as they offer
significantly higher performance. If HDDs are used, we recommend 15k RPM SAS disks in a
RAID10 configuration for a balance of performance and fault tolerance.

 Decide how many MongoDB servers you need:

o Standalone server – for testing and development.

o Single replica set – The minimum recommended configuration for production, which
should have at least 2.5 servers: two full capacity data servers for failover and one low

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 12 of 57

capacity server for the arbiter. We recommend three data servers for a robust and
resilient deployment, especially during maintenance.

http://docs.mongodb.org/manual/replication/

Sharded cluster – When and how to implement this depends on the data size and performance
requirements. There will be multiple shards, with each being a replica set.

http://docs.mongodb.org/manual/core/sharding/

For more information, see the Performance Considerations for MongoDB and MongoDB Operations
Best Practices whitepapers on the MongoDB website.

http://info.mongodb.com/rs/mongodb/images/MongoDB-Performance-Considerations_2.4.pdf

http://info.mongodb.com/rs/mongodb/images/10gen-MongoDB_Operations_Best_Practices.pdf

Note
We recommend that you only use single server installations for development and testing.

MongoDB Installation

Install an empty MongoDB database following the installation instructions provided on the MongoDB
website: http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

When you have completed the installation of Sitecore and MongoDB you will not see any collections
or documents in MongoDB straight away. MongoDB only creates the required database collections
and documents you need when there have been visits to your website.

Note
In MongoDB you carry out most administration tasks using the command line tool mongo shell. If you
prefer to use a GUI administrative interface, you could use a GUI client such as MongoVUE but note
that this tool is not written or supported by MongoDB, Inc.

Configuring MongoDB as a Service

When you install MongoDB, configure it as a Windows service so that the Mongo service starts
automatically every time you start your computer. If you wish, you can change this setting in Services
to start the Mongo service manually. See the MongoDB documentation for steps on how to do this
using the command line:

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

Connecting to MongoDB

You can only connect to MongoDB if you have first configured the connection strings correctly in the

ConnectionStrings.config file in your site root. For more information on configuring connection

strings see the section Sitecore Experience Platform Connection Strings.

After you have configured your connection strings, test MongoDB by opening the MongoDB client and
connect to the MongoDB database that you created.

To connect to MongoDB using MongoVUE:

1. In the MongoVUE client, click Connect to create a connection to your MongoDB installation.

http://info.mongodb.com/rs/mongodb/images/MongoDB-Performance-Considerations_2.4.pdf
http://info.mongodb.com/rs/mongodb/images/10gen-MongoDB_Operations_Best_Practices.pdf
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 13 of 57

2. In the Connect window, click the + symbol to open the Create new Connection dialog box.

3. Enter a name for your MongoDB instance, a server name, and a port number.

4. Click Test to test the connection and click Save to save your connection settings.

Once you have created a connection, you should be able to see the databases with the

names that you specified in the ConnectionStrings.config file.

MongoDB databases:

 analytics

 anayticshistory

 analyticslive

 local

Note
You need to start Sitecore and visit your website before these databases appear in
MongoDB.

For an example MongoDB replica set architecture, see the xDB Overview and Architecture document.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 14 of 57

2.4 Configuring Connection Strings

This section contains information about the connection strings you need to configure in Sitecore® XP.
For more detailed information on configuring connection strings for dedicated servers, see the section
Server Configuration.

For more information on configuring connection strings when installing Sitecore® XP, see the Sitecore
CMS 7.5 Installation Guide on SDN.

Sitecore Experience Platform Connection Strings

After you have installed Sitecore CMS, configure the CMS connection strings and any other
connection strings you need.

How you configure connection strings can vary depending on the role/s you have assigned to your
servers, for example, whether you have dedicated servers for content management, content delivery
or for processing. This section describes the general settings you need for a minimal environment and
not the specific parameters you need to configure each role.

To configure Sitecore connection strings open the ConnectionStrings.config file:

1. In your website root folder navigate to the App_Config folder:

<sitename>\Website\App_Config

2. Open the ConnectionStrings.config file in Visual Studio.

3. Configure CMS connection strings for the Core, Master, and Web databases, MongoDB for
the collection database and SQL Server for reporting.

4. See the table below for example connection strings and instructions on how to do this.

5. Save all changes to the ConnectionStrings.config file.

Database
Name

Description

Core
Master
Web

Configure the Sitecore CMS, SQL Server connection strings for the Core, Master,
and Web databases.
See the example connection strings below:

<add name="core" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=_core_database_name_" />

<add name="master" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=_master_database_name_" />

<add name="web" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=_web_database_name_" />

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 15 of 57

Database
Name

Description

Collection

This is a NoSQL MongoDB database.

Mongo DB collection databases include:

 analytics

 tracking.live

 tracking.history

Configure these connection strings to connect to MongoDB:

<add name="analytics"

connectionString="mongodb://_mongo_server_name_:_port_number_/_

collection_db_name_" />

<add name="tracking.live"

connectionString="mongodb://_mongo_server_name_:_port_

/_tracking_live_db_name_" />

<add name="tracking.history"

connectionString="mongodb://_mongo_server_name_:_port_

/_tracking.history_db_name_" />

Session If you choose to use a session state server, then configure one of the following
connection strings (this is an optional step).

MongoDB:
<add name="session" connectionString="mongodb://_mongo_server_name_:_port_

/_session_db_name_" />

SQL Server:
<add name="session-mssql" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=_session_db_name_" />

.

Reporting

This is a SQL Server database.
The reporting database contains Fact and Dimension tables for storing all
aggregated data used by Sitecore reporting applications.

<add name="reporting" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=Sitecore_Reporting" />

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 16 of 57

Database
Name

Description

Reporting
secondary

This is a SQL Server database.
Use the reporting secondary database if you want to perform a rebuild of the
reporting database.

Reasons for performing a rebuild of the reporting database:

 If you have re-classified a search key word or traffic type, aggregated report
data is not updated automatically.

 To keep the collection (MongoDB) and reporting databases (SQL)
synchronized with each other.

<add name="reporting.secondary" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=Sitecore_Reporting_Secondary" />

Note: You only need to connect the reporting secondary database if you want to
perform rebuild of reporting database.

6. Once you have configured all your connection strings and added the configuration files, test
your Sitecore installation by launching your website and you should see a blank Sitecore
home page.

7. To verify that you have connected to the reporting database open SQL Server Management
Studio and expand the Tables node to see all the Fact and Dimension tables contained in the
reporting database.

8. Test the MongoDB installation by checking that all your xDB databases, such as analytics and
tracking_live appear in your MongoDB client.

After configuring connection strings for MongoDB you may need to generate some data on
your website before you see any collections or documents. MongoDB creates the databases
dynamically, so if your website has no contact or interaction data then you do not see any
collections or documents.

For more information on testing your configuration, see Verifying a Connection to the
Collection Database.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 17 of 57

2.4.1 Verifying a Connection to the Collection Database

Follow the steps in this section to verify that you have configured your standalone Sitecore
environment correctly.

To test that you have configured your Sitecore CMS connection strings correctly open your website in
a web browser and check that you can log in to the Sitecore Desktop.

When you install the xDB for the first time there is no pre-defined website. To test your connection to
MongoDB, generate some local visits to your empty website. Any visits you make to your website
appear as new interactions in the collection database.

Verify the MongoDB Collection Database

To check that the interaction appears correctly in the collection database:

1. Open your NoSQL database, open the MongoDB client and connect to the appropriate
database.

2. In MongoVUE, you can see that before any contacts visit your website, only some collections
are visible. In the following screenshot, the Analytics database appears but it does not yet
contain any collections.

The Contacts and Interactions collections are missing until your website has visits.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 18 of 57

Make a visit to your website test page then refresh MongoDB. Expand the analytics database
and then expand the Collections node.

You can see four new collections relating to browser and system information but no
interaction or contact collections appear yet.

Session End Default Timeout Setting

After making a test visit, you may need to wait 20 minutes before MongoDB updates with the latest
changes. For testing purposes you may wish to make data appear more quickly.

To change the default timeout setting:

1. Open the web.config file.

2. Navigate to the <sessionState node.

3. Change the session end default timeout setting from 20 to 1 minute.

<sessionState mode="InProc" cookieless="false" timeout="1">.

4. Make a visit to your website test page then refresh MongoDB. Data should now appear in
MongoDB after one minute.

Note
It is highly recommended that you change the default timeout setting for testing purposes
only. The default setting should be restored as soon as possible.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 19 of 57

5. Refresh the MongoDB database again. After a short time you should see the Contacts,
Devices, and Interactions collections added to MongoDB.

6. Right click Interactions and then click View to see all the interactions made with your website.

7. In this example, five interactions are stored in this collection. Expand one of these interactions
and view data relating to the pages visited. The visit in the following screenshot consists of

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 20 of 57

two page views.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 21 of 57

Verifying SQL Server Fact and Dimension tables

Before you can verify that Fact and Dimension tables contain pre-aggregated data, ensure that you
have data in the collection database and have configured processing correctly.

For more information on configuring a standalone processing server, see section 3.3.4 Error!
Reference source not found..

Query one of the SQL Server Fact tables, such as Fact_PageViews and view all rows to see if it

contains any data. If the table contains analytics data then the processing layer is working correctly.

Note
If you cannot see any data in the Fact_ tables check that the ConnectionStrings.config on the
processing server to see if the analytics connection string to MongoDB is configured correctly and that
you have data in the collection database.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 22 of 57

2.5 Server Configuration

Just like its predecessor, the xDB supports a standalone all-in-one configuration, retaining the ability
to run on a single server. This allows for easy deployment of a development environment or a small,
low-traffic production instance. However, you only see the real benefits and flexibility of the xDB
architecture when you start trying to improve the performance of your application.

To achieve better performance and scalability you can configure dedicated servers for different
purposes such as for content delivery or data processing. You can choose from a list of server
features that you can configure on single or multiple dedicated servers.

In practical terms, to assign features to a dedicated server you simply configure a reduced set of
components on a server. You can do this by disabling or enabling configuration files in your Sitecore
installation. This gives you flexibility and fine-grained control over the tasks and activities that you
assign to each of your Sitecore instances.

By dividing your Sitecore application up into multiple servers performing different activities, you
increase your scaling options. For improved application performance, you can scale both vertically (by
scaling up the hardware on each server) and horizontally (by adding more servers to perform each
activity). For improved availability and reliability, you can create clusters, such as for content delivery
or data processing.

For additional flexibility, you can also configure a single server to perform multiple server tasks. For
example, you could enable content management, content delivery, and reporting on a single server
but move the MongoDB collection database to another server.

2.5.1 Server Features

To configure a server to use the following server features, you may need to make changes to the
default configuration of your Sitecore solution.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 23 of 57

The following table describes the server features that you can enable or disable on dedicated servers
along with the required connection strings and configuration files that you need to enable or disable.

All connection strings are stored in the ConnectionStrings.config file which is located in the

/App_Config/ folder and all configuration files are stored in the /App_Config/Include folder.

Server Feature and
Description

Connection strings Configuration files

Tracking

To track online visits,
contacts (visitors),
personalization,
goals, campaigns, profiles,
pattern cards and
multivariate tests.
All tracking data is saved
by default in the MongoDB
collection database.

Configure the following
database connection strings:

 analytics

 tracking.live

Required configuration files:
 Sitecore.Analytics.Tra

cking.config

 Sitecore.Analytics.Tra

cking.Database.config

 Sitecore.Analytics.Tra

cking.Aggregation.conf

ig

 Sitecore.Analytics.Tra

cking.RobotDetection.c

onfig

If you want to enable all tracking
subsystem features but don’t want
tracking data to be saved to the
collection database, you must
disable the following configuration
files:

 Sitecore.Analytics.Tra

cking.Database.config

 Sitecore.Analytics.Tra

cking.Aggregation.conf

ig

 Sitecore.Analytics.Tra

cking.RobotDetection.c

onfig

Reporting

Can use data from the
collection and reporting
databases. Data is used in
applications such as
Engagement Analytics
reports and the Executive
Insight Dashboard.

Configure the following
database connection strings:

 analytics

 reporting

Required configuration file:

 Sitecore.Analytics.Rep

orting.config

Processing

Processing can rebuild the
entire reporting database
on request if data in the
collection database has
changed and has become
out of sync. For example,
classification of contact or
locations.

Configure the following
database connection strings:

 tracking.live

 tracking.history

 analytics

 reporting.secondary

Required configuration file:
 Sitecore.Analytics.Pro

cessing.config

 Sitecore.Analytics.Pro

cessing.Services.confi

g

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 24 of 57

Server Feature and
Description

Connection strings Configuration files

Aggregation

Responsible for extracting
data from the collection
database, grouping it and
reducing it and then storing
it in the reporting database
for use by Sitecore
reporting applications.
Aggregation keeps the
reporting database
synchronized with the
collection database.

Configure the following
database connection strings:

 tracking.live

 reporting

Required configuration files:
 Sitecore.Analytics.Pro

cessing.Aggregation.co

nfig

 Sitecore.Analytics.Pro

cessing.Aggregation.Pr

ocessingPools.config

 Sitecore.Analytics.Pro

cessing.Aggregation.Se

rvices.config

Reporting Service

Can query different data
sources for Sitecore
reporting applications: it
queries the reporting
database for grouped data,
aggregated data and trends
and the collection database
for individual contact or
interaction data.

Configure the following
database connection strings:

 reporting

 analytics

Required configuration files:

 Sitecore.Analytics.Rep

orting.config

 Sitecore.Analytics.R

eporting.RemoteClien

t.config

 Sitecore.Analytics.R

eporting.RemoteServe

r.config

EAS Processing

Processing of engagement
automation state timeouts
This feature is responsible
for setting up the
automation workers to
process EAS timeout
conditions.

Configure the following
database connection strings:

 analytics

Required configuration file:

 Sitecore.Analytics.Aut

omation.TimeoutProcess

ing.config

The following configuration files are necessary for all the server features and should therefore not be
disabled:

 Sitecore.Analytics.config

 Sitecore.Analytics.Model.config

 Sitecore.Analytics.Mongodb.config

Note
All configuration files are enabled by default with the exception of

Sitecore.Analytics.Reporting.RemoteClient.config and

Sitecore.Analytics.Reporting.RemoteServer.config file, which are disabled by default.

2.5.2 Server Configuration Examples

This section includes step by step instructions on setting up dedicated servers to implement different
server features. These steps may require you to make change to the default Sitecore xDB installation.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 25 of 57

The examples in this section are standard server examples provided by Sitecore. This type of server
configuration is most suitable for installations where you want to scale vertically. You can use these
as examples as a guide or you can modify them by combining servers and features in a way that best
suits your own Sitecore solution.

Note
When you install Sitecore, some configuration files are enabled by default. You may need to manually
disable configuration files depending on the purpose of your server.

Content Delivery Server

A content delivery server requires the Tracking server feature.

To configure a single server for content delivery:

1. Install and configure your content delivery Sitecore environment according to the instructions
in the Sitecore Installation Guide.

2. Remove or restrict access to the client. You do not need the Sitecore client on a content
delivery server. For more information on how to do this, see chapter 4 in the Sitecore CMS
7.0 Scaling Guide on SDN.

3. Navigate to the /App_Config/Include folder and disable the following configuration files.

To disable a configuration file change the extension from .config to .disabled.

o Sitecore.Analytics.Automation.TimeoutProcessing.config

o Sitecore.Analytics.Processing.Aggregation.Services.config

o Sitecore.Analytics.Processing.Services.config

o Sitecore.Analytics.Reporting.config

Note
When you install Sitecore, some configuration files used for content delivery are enabled by
default.

4. Ensure that the following configuration files remain disabled:

o Sitecore.Analytics.Reporting.RemoteClient.config.disabled

o Sitecore.Analytics.Reporting.RemoteServer.config.disabled

5. Content delivery servers do not require all connection strings to be active. For example, there
are some security benefits in removing the reporting connection string. Either remove these
strings completely or add comment tags to hide them.

In the /App_Config/ConnectionStrings.config file remove the following connection

strings:

<add name="reporting" connectionString="….."/>

<add name="tracking.history" connectionString="mongodb:….."/>

6. In the /App_Config/ConnectionStrings.config file, configure the Sitecore CMS web

application to connect to the Core and Web databases from the database server, but not the
Master database.

Note
To disable the master database, you comment out the connection string.

7. Assign a name for each content delivery server. This is especially important if you are
creating a cluster of content delivery servers. Add the name to the

Sitecore.Analytics.Tracking.config file.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 26 of 57

To assign a name, open the Sitecore.Analytics.Tracking.config file and add a

name to the value parameter in the following setting:

<setting name="Analytics.ClusterName" value="" />

The name should be identical for all content delivery servers that are in the same cluster.

For example:

<setting name="Analytics.HostName" value="www.domain.com" />

<setting name="Analytics.ClusterName" value="cluster1.domain.com" />

Additional steps necessary to configure Sitecore.Search functionality:

1. Ensure that the Sitecore.ContentSearch.Lucene.Index.Master.config file is

disabled.

2. Locate the Sitecore.ContentSearch.DefaultConfigurations.config file and

comment out all strategies where the master database is used.

3. Locate the Sitecore.ItemBuckets.config and comment out the following section:

<database id="master">.

4. At Sitecore.ContentSearch.config disable the following section by commenting it out:

 <scheduling>

 <!-- An agent to optimize the specified indexes periodically. -->

 <agent type="Sitecore.ContentSearch.Tasks.Optimize" method="Run"

 interval="01:00:00">

 <indexes hint="list">

 <index>sitecore_master_index</index>

 </indexes>

 </agent>

 </scheduling>

In this type of configuration, the content delivery server is used for tracking. We recommend that
tracking is the only analytics feature you enable on a dedicated content delivery server.

Note
If you only have a single cluster then the cluster configuration described in this section is not
applicable.

For more information on enabling other features on a server, see Server Features.

Note
To use Sitecore MVC with the xDB, navigate to

/App_Config/Include/Sitecore.MvcAnalytics.config.disabled. Rename the

Sitecore.MvcAnalytics.config.disabled file to Sitecore.MvcAnalytics.config.

Note
If you experience contact locking while running the Email Experience Manager (EXM) in a scaled
environment, then see the ECM Administrator’s and Developer’s Guide for further tips and guidance.

Content Management Server

A content management server requires the Reporting server feature.

To configure a single server for content management:

1. Install and configure your content management Sitecore environment according to the
instructions in the Sitecore Installation Guide and the Sitecore Scaling Guide.

2. Navigate to the /App_Config/Include folder and disable the following configuration files.

To disable a configuration file change the extension from .config to .disabled:

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 27 of 57

o Sitecore.Analytics.Automation.TimeoutProcessing.config

o Sitecore.Analytics.Processing.Aggregation.Services.config

o Sitecore.Analytics.Processing.Services.config

o Sitecore.Analytics.Tracking.Database.config

o Sitecore.Analytics.Tracking.Aggregation.config

3. Ensure that the following configuration file remains disabled:

o Sitecore.Analytics.Reporting.RemoteClient.config.disabled

o Sitecore.Analytics.Reporting.RemoteServer.config.disabled

4. Open the /App_Config/ConnectionStrings.config file and configure connection

strings for the following databases:

SQL Server:

o core

o master

o web

o reporting

MongoDB:

o analytics

o tracking.live

Note

You should always configure the sessions connection string unless you use the InProc mode
for session state. It is ok to configure a content management server with the InProc session
provider because it does not perform the same tasks as a content delivery server. This also
means a content management server should never be a part of a content delivery cluster.

In this type of configuration, the content management server is used for tracking but does not save
any changes to the collection database.

Note
Before running history processing using the RebuildReportingDb.aspx page, make sure you add a

reporting.secondary connection string to the ConnectionStrings.config file.

Example reporting.secondary connection string:

<add name="reporting.secondary" connectionString="…."/>

Note

If you are configuring a pure content management server role, the Tracking.Database.config

file must be disabled. However, if you want the content management server role to be mixed, or if
there is a chance that other modules may depend on the tracking data access API, then the

Tracking.Database.config file must be enabled.

For more information on enabling other features on a server, see Server Features.

Note
To use Sitecore MVC with the xDB, navigate to

/App_Config/Include/Sitecore.MvcAnalytics.config.disabled. Rename the

Sitecore.MvcAnalytics.config.disabled file to Sitecore.MvcAnalytics.config.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 28 of 57

Processing Server

Configure a processing server in the same way as you configure a content delivery server. You can
create one or multiple processing servers that can be configured for aggregation or other kinds of
processing. As a general rule, the more aggregation server instances you create, the faster
aggregation processing will be.

A processing server can use one or more of the following server features:

 Processing

 Aggregation

 EAS Processing

You can configure separate servers to perform each of these tasks independently on dedicated
servers.

To configure a processing server role:

1. Install a standard Sitecore CMS instance on the server you want to use for processing.

2. Remove or restrict access to the client. You do not need the Sitecore client on a processing
server.

For more information and steps on how to do this, see the Sitecore CMS 7.0 Scaling Guide
on SDN.

3. Navigate to the /App_Config/Include folder and disable the following configuration files.

To disable a configuration file change the extension from .config to .disabled:

o Sitecore.Analytics.Tracking.Database.config

o Sitecore.Analytics.Tracking.config

o Sitecore.Analytics.Reporting.config

o Sitecore.Analytics.Tracking.RobotDetection.config

o Sitecore.ContentSearch.Lucene.Index.Web.config

Ensure that the following configuration files remain disabled:

o Sitecore.Analytics.Reporting.RemoteClient.config.disabled

o Sitecore.Analytics.Reporting.RemoteServer.config.disabled

4. In the /App_Config/ConnectionStrings.config file comment out or remove the Web

and Session connection strings:

<add name="web" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=Sitecore_web" />

<add name="session"

connectionString="mongodb://_mongo_server_name:_port_number/_session_database_name" />

In the Sitecore.Buckets.config file, comment out the following section:

<database id="web" singleInstance="true" type="Sitecore.Data.Database,

Sitecore.Kernel">

 </database>

5. Locate the Sitecore.ContentSearch.DefaultConfigurations.config file and

comment out all the strategies where the Web database is used.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 29 of 57

6. In the web.config file, comment out the Sitecore.Tasks.PublishAgent section.

7. In the Sitecore.WebDAV.config file, comment out the following section:
Sitecore.Tasks.CleanupFDAObsoleteMediaData

8. In the web.config file, comment out the following section:

<database id="web" singleInstance="true" type="Sitecore.Data.Database,

Sitecore.Kernel">

<database>

Also, comment out any websites that use the Web database:

<site name="modules_website”>

 <site name="website">

To configure aggregation agents or threads on a processing server:

1. Open the Sitecore.Analytics.Processing.Aggregation.config file in an XML

editor. You can specify how many aggregation agents you want to run at the same time. Start
by using the default settings.

2. Edit the <MaxThreads> setting to specify the number of aggregation agents (threads) that

you want to run on the server. You can also specify how many cleanup and recovery threads
that you need. Adjust these settings depending on your available hardware and business
requirements.

 <!-- Aggregation Module: -->

 <module type="Sitecore.Analytics.Aggregation.AggregationModule"

 singleInstance="true">

 <BackgroundServices hint="list:Add">

 <aggregator type="Sitecore.Analytics.Aggregation.BackgroundService">

 <param desc="agentName">aggregation/aggregator</param>

 <Interval>0.00:00:15</Interval>

 <MaxThreads>16</MaxThreads>

 </aggregator>

 <cleanup type="Sitecore.Analytics.Aggregation.BackgroundService">

 <param desc="agentName">aggregation/cleanup</param>

 <Interval>0.00:00:15</Interval>

 <MaxThreads>16</MaxThreads>

 </cleanup>

 <recovery type="Sitecore.Analytics.Aggregation.BackgroundService">

 <param desc="agentName">aggregation/recovery</param>

 <Interval>0.00:00:15</Interval>

 <MaxThreads>16</MaxThreads>

 </recovery>

 <history type="Sitecore.Analytics.Aggregation.BackgroundService">

 <param desc="agentName">aggregation/historyWorker</param>

 <Interval>0.00:00:15</Interval>

 <MaxThreads>16</MaxThreads>

 </history>

 <historyCompletionCheck

 type="Sitecore.Analytics.Aggregation.BackgroundService">

 <param desc="agentName">aggregation/historyCompletionCheck</param>

 <Interval>0.00:00:15</Interval>

 <MaxThreads>1</MaxThreads>

 </historyCompletionCheck>

 </BackgroundServices>

 </module>

Start by using the default values and then over time adjust these settings to optimize your
aggregation server or servers.

In this type of configuration, the processing server performs two functions: aggregation and
processing. These are the two main roles for a processing server.

Aggregation Performance Tip

If you rebuild the entire MongoDB analytics database, then you might experience some performance
issues during aggregation processing.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 30 of 57

To optimize performance during aggregation, edit the Lucene and SOLR analytics configuration files
and adjust the minimum and maximum queue size values.

To adjust the minimum and maximum queue size settings, open one of the following configuration

files in the Website\App_Config folder:

 Sitecore.ContentSearch.Lucene.Index.Analytics.config

 Sitecore.ContentSearch.Solr.Indexes.Analytics.config

Note
The Solr indexing configuration file is only present here if you have installed Solr.

Increase the MinimumQueueSize value if your throughput is extremely high.

<crawler type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsVisitPageCrawler,

 Sitecore.ContentSearch.Analytics">

 <CrawlerName>Lucene Visit Page Crawler</CrawlerName>

 <ObservableName>VisitPageObservable</ObservableName>

 <NumberOfSecondsToQueue>60</NumberOfSecondsToQueue>

 <MinimumQueueSize>500</MinimumQueueSize>

 <MaximumQueueSize>50000</MaximumQueueSize>

</crawler>

Note

Before running history processing using the RebuildReportingDb.aspx page, make sure you add

a reporting.secondary connection string to the ConnectionStrings.config file.

For more information on enabling other features on a server, see Server Features.

Reporting Service Server

A Reporting Service server requires the Reporting Service server feature.

To configure a dedicated Reporting Service server:

1. Install Sitecore instance from Sitecore distributive.

2. Navigate to the /App_Config/Include folder and disable the following configuration files.

To disable a configuration file change the extension from .config to .disabled:

o Sitecore.Analytics.Tracking.Database.config

o Sitecore.Analytics.Tracking.config

o Sitecore.Analytics.Tracking.Aggregation.config

o Sitecore.Analytics.Processing.Aggregation.Services.config

o Sitecore.Analytics.Processing.Services.config

o Sitecore.Analytics.Automation.TimeoutProcessing.config

o Sitecore.Analytics.Tracking.RobotDetection.config

3. Navigate to the /App_Config/Include folder and enable the following configuration file:

o Sitecore.Analytics.Reporting.RemoteServer.config

4. In the /App_Config/ConnectionStrings.config file comment out or remove the

tracking.live and tracking.history connection strings:

<add name="tracking.live " connectionString="mongodb:….."/>

<add name="tracking.history" connectionString="mongodb:….."/>

In this type of configuration, the dedicated server performs a single function as the Reporting Service
which can query multiple data sources such as the collection or reporting databases to gather data for

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 31 of 57

dashboards and reports. We recommend that you only configure one and not multiple dedicated
Reporting Service servers.

For more information on enabling other features on a server, see Server Features.

To enable communication between the content management server (client) and the Remote
Reporting Service, you must make the following configuration changes:

1. On your content management server client, in the Website/App_Config folder, open the

Sitecore.Analytics.Reporting.RemoteClient.config file and enable it by

removing .disabled from the file name.

2. Under the <httpTransportFactory> node, change the default value of the desc

parameter to the hostname of your Reporting Service server instance.

See the following example:

<httpTransportFactory

 type="Sitecore.Analytics.Commons.ConfigurationBasedHttpTransportFactory,

 Sitecore.Analytics" singleInstance="true">

 <param desc="serviceUrl">http://reportingservice/</param>

</httpTransportFactory>

3. In the Website/App_Config folder, open the ConnectionStrings.config file and

comment out or remove the following reporting, tracking.live and tracking.history connection
strings:

<add name="reporting" connectionString="….."/>

<add name="tracking.live " connectionString="mongodb:….."/>

<add name="tracking.history" connectionString="mongodb:….."/>

Collection Database Server (xDB)

To configure a dedicated collection database server.

1. Install a blank MongoDB database by following the instructions on the MongoDB website.

For hardware and software guidelines see, Hardware Guidelines and Software
Recommendations.

Note
The xDB MongoDB analytics database is used as the xDB collection database. So when you
create a dedicated collection database server there is no need to install a Sitecore instance.

2. Install the Windows version of MongoDB and ensure that it is running as a service.

3. Configure a MongoDB three-server replica set – To see an example of a standard MongoDB
replica set architecture that consists of three MongoDB instances (primary, secondary and
arbiter), see the xDB Overview and Architecture document.

Note
For production environments, we do not recommend that you configure a standalone
MongoDB instance instead you should configure a replica set to ensure automatic failover
and data safety.

4. Once you have configured the collection database on a dedicated server then all other
servers that have an analytics connection string or need to connect to the MongoDB
collection database should be configured to point to this server and to use the correct port
number.

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 32 of 57

Session Database Server

You can install a session database on either a MongoDB or SQL Server dedicated server.

Note
A dedicated Sitecore instance is not required when configuring a dedicated session state database
server.

To use MongoDB or SQL Server as dedicated session servers you also need to install the appropriate
session state provider:

 Sitecore ASP.NET Session State Provider for MongoDB

 Sitecore ASP.NET Session State Store Provider for Microsoft SQL Server

Ensure that you configure connection strings on any other servers that need to connect to the session
state database server.

For more information on configuring session state servers, see the section on Session State.

Reporting Database Server

A reporting database server does not need to be installed or run on a Sitecore instance. You can
install a reporting database as a dedicated SQL Server instance.

To configure a Microsoft SQL Server instance as a dedicated reporting server:

1. Install SQL Server 2008 R2 SP1 or later.

2. On your content management and processing instances, open the ConnectionStrings.config
file, modify the connection strings to point to the dedicated reporting database server.

3. Ensure that you configure connection strings for any other servers that need to connect to the
reporting database server.

4. Ensure that your SQL Server instance is configured and running correctly.

5. Test your connections.

For more information on configuring connection strings for the reporting database, see section 2.4
Configuring Connection Strings.

Note
A SQL Server reporting can only be scaled vertically.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 33 of 57

2.6 Session State

A session state server stores information relevant to current contact sessions. The Sitecore xDB
comes with two session state services:

 Private session state holds information private to sessions. This is contact visit information,
such as pages viewed, goals converted, or campaigns triggered.

 Shared session state holds information that may be shared by multiple visits on the same
cluster, such as contacts and devices.

You can configure session state in two different ways; as either in process (InProc) or out of

process.

Important
Sitecore requires that you must configure both private and shared session state. You can choose to
use the same database for both private and shared sessions but to ensure that the system can
distinguish between the private and shared session entries you must remember to configure the

sessionType attribute in the web.config file correctly.

2.6.1 In Process

In process (InProc) is the default session state provider that comes with the Microsoft .NET

Framework. It uses internal memory to track interactions and visits.

In process is the most suitable way of handling private session state for all data related to a specific
interaction (single visitor session or visit). It is the recommended mode to use for content
management servers.

Note

You cannot use InProc in a load balanced environment unless you configure the load balancer to

use sticky sessions.

2.6.2 Out of Process

Out of process means that you use an external ASP.NET session state provider such as MongoDB or
SQL Server. This is suitable for handling shared session state if you have multiple content delivery
servers. It is also suitable if you have multiple content management servers and you do not wish to
use sticky sessions.

Sitecore comes with the following two session state providers for configuring out of process session
state:

 Sitecore ASP.NET Session State Provider for MongoDB

 Sitecore ASP.NET Session State Store Provider for Microsoft SQL Server

2.6.3 Session State Configuration Scenarios

The following example scenarios provide guidance on how to configure session state on several
different types of Sitecore server configurations.

Single Sitecore Server

On a single standalone Sitecore instance both session providers should use the in process (InProc)

session state mode.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 34 of 57

Single Content Delivery Server and a Separate Content Management Server

On the content delivery server you should configure both session providers to use the in process

(InProc) session state mode.

Important
When configuring session state on content management servers you should always configure session

state providers to use the in process (InProc) mode. Sitecore xDB does not support sharing session

state among a group of content management servers or between content management and content
delivery servers.

Content Delivery Cluster with a Sticky Load Balancer

On all content delivery instances you should configure the ASP.NET session state provider to use the

in process (InProc) mode. You should configure the shared session state provider to use one of the

out of process modes connected to a database shared among all the content delivery instances.

Content Delivery Cluster with a Non-Sticky Load Balancer

On all content delivery instances you should configure both session state providers to use one of the
out of process modes connected to a database (or databases) shared among the content delivery
instances.

For an overview of session state, see the xDB Overview and Architecture document.

For more information on scalability settings and installing a dedicated content delivery server, see the
Sitecore Scaling Guide.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 35 of 57

2.7 Configuring Private Session State

Private session state holds visit information private to contact sessions such as pages viewed, goals
converted, campaigns triggered or engagement points accumulated.

You can use either MongoDB or SQL Server as your private session state store. If you are running an
on-premise solution with a MongoDB database as your collection database then we recommend that
you use MongoDB as your session store.

The Sitecore ASP.NET Session State Provider for MongoDB allows you to use MongoDB as your

session state store. This provider supports the SessionEnd event, which the xDB needs to track

website visits.

Note

Private session state is not required to support the Session_End event on content management

servers. Private session state must support the Session_End event on content delivery servers.

Follow the steps in this section to configure a MongoDB or SQL Server session state provider.

Note
If you are using a MongoDB session provider then all content delivery servers should use the same
provider pointing to the same database.

2.7.1 Configuring the MongoDB Session State Provider

Follow the steps in this section to use a MongoDB database as your private session state store using
the Sitecore ASP.NET Session State Provider for MongoDB.

MongoDB Hardware Considerations

For each web request the content delivery server accesses the session state store database multiple
times. This can have a significant impact on the performance of your web site, so we recommend that
you use solid-state drives for the database and install enough memory to avoid frequent disk reads.

Each visit requires about 30 kilobytes of storage capacity in the session database (by default) but
space requirements may change depending on customizations.

You can calculate the disk space requirements expressed in kilobytes using the following formula:

 Maximum number of concurrent visits * 30

Note
This includes active visits and those which are inactive but which have not yet timed out.

You can also use the same formula to calculate memory requirements.

See the following MongoDB documents for more details:

http://docs.mongodb.org/manual/faq/diagnostics/#how-do-i-calculate-how-much-ram-i-need-for-my-application

http://docs.mongodb.org/manual/faq/storage/#what-is-the-working-set

For more information on how to install and configure a MongoDB database, see the steps outlined
earlier in section 2.3.3 Install MongoDB and the MongoDB website.

Deploying the MongoDB Session Database

To configure the Sitecore ASP.NET Session State Provider for MongoDB:

1. Install MongoDB database server version 2.6 or later. We recommend that you install this on
a dedicated server.

2. Configure Sitecore to use the Sitecore ASP.NET Session State Provider for MongoDB (see
the instructions in this section).

http://docs.mongodb.org/manual/faq/diagnostics/#how-do-i-calculate-how-much-ram-i-need-for-my-application
http://docs.mongodb.org/manual/faq/storage/#what-is-the-working-set

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 36 of 57

Configuring Sitecore

Configure the ASP.NET session state provider for MongoDB in the same way as any other custom
session state store provider.

To connect the MongoDB session provider:

1. Open the ConnectionStrings.config file located here

<sitename>\Website\App_Config and add the following connection string:

<add name="session"

connectionString="mongodb://_mongo_server_name_:_port_number_/_session_database_name_"

/>

2. Open the web.config file in your site root folder <sitename>\Website and locate the

sessionState section:

<sessionState mode="InProc" cookieless="false" timeout="20">

3. Update the sessionState section to use the MongoDB provider instead of InProc as

shown in the following example. Also, change the name attribute value to mongo:

<sessionState mode="Custom" customProvider="mongo" cookieless="false" timeout="20">

 <providers>

 <add name="mongo"

 type="Sitecore.SessionProvider.MongoDB.MongoSessionStateProvider,

 Sitecore.SessionProvider.MongoDB"

 connectionStringName="session"

 pollingInterval="2"

 compression="true"

 sessionType="private"/>

 </providers>

</sessionState>

Configuration options:

Setting Description

connectionStringName

For example:
connectionStringName="session"

Edit the connection string so that the session provider
connects to the SQL Server database that you want to

use. In the xDB this database is called session.

Polling interval

For example:
pollingInterval="2"

This is the time interval in seconds that the session
store provider uses to check if any sessions have
expired.

Compression

For example:
compression="true" />

This setting is a Boolean flag that indicates whether to
compress session state data or not. The default value is
true. Compressing session state data reduces the
amount of data that you need to transfer between the
database and the Sitecore instance. This may cause
some additional CPU overhead.

sessionType

For example:
sessionType="private"

This value must be set either to private or shared.

If you have configured everything correctly, a session database should appear in your list of

MongoDB databases after the first web request.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 37 of 57

2.7.2 Configuring the SQL Server Session State Provider

Follow the steps in this section to use a SQL Server database as your private session state store
using the Sitecore ASP.NET Session State Provider for SQL Server.

This might be an appropriate option if you are running the collection database (MongoDB) in the cloud
as a service or if you prefer not to run an on-premise MongoDB server instance.

This provider supports the session end event which is required by the xDB in order to track website
visits.

To configure Private Session State Provider for Microsoft SQL Server:

 In Microsoft SQL Server, deploy the Session database

 Configure Sitecore to use the SQL Server session provider.

Deploying the SQL Server Session Database

For each web request the session state store database is accessed multiple times. This can have a
significant impact on the performance of your web site. Therefore we recommend that you install
enough RAM to allow Microsoft SQL Server to keep the session state database in memory. We also
recommended that you put the database files on an SSD drive.

To deploy the Session database:

1. Start Microsoft SQL Server Management Studio 2012 or later.

2. Connect to the server node that you want to install the Session database on.

3. Expand the server node, right-click Databases, and then click Attach.

4. In the Attach Databases dialog box, click Add.

5. Browse to the Databases folder in your website root folder, select the

Sitecore.Sessions.mdf database and click OK.

6. In the Attach Databases dialog box, click OK. The session database now appears in your list
of attached databases.

7. Add the following connection string to the ConnectionStrings.config file:

<add name="sharedsession" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database = _sharedSession_database_name_"/>

The add name value can be session or sharedsession depending on whether you are

configuring private or shared session state.

Performance Optimizations

To achieve optimal performance you can install an extension to the Sessions database.

To install the performance enhancements start Microsoft SQL Server Management Studio 2012:

1. Open the Performance Boost.sql file.

2. In the first line of the Performance Boost.sql file replace USE [Sitecore_Session]

with the name of your session database.

3. After you have updated the USE statement to point to your session database hit F5 key to
execute the file.

Note
The performance enhancements are not supported on Windows Azure.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 38 of 57

Configuring Sitecore

You configure the ASP.NET session state store provider for Microsoft SQL Server in the same way as
any other custom session state store provider.

To connect to the SQL Server session provider:

1. Open the ConnectionStrings.config file located here

<sitename>\Website\App_Config and add the following connection string:

<add name="session" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database=_session_database_name_" />

2. Open the web.config file in your site root folder <sitename>\Website and locate the

sessionState section:

<sessionState mode="Custom" customProvider="mssql" cookieless="false" timeout="20">

3. Update the sessionState section by adding the SQL Server provider as shown in the

following example. Also, change the name attribute value to mssql:

<sessionState mode="Custom" customProvider="mssql" cookieless="false" timeout="20">

 <providers>

 <add name="mssql"

 type=" Sitecore.SessionProvider.Sql.SqlSessionStateProvider,

 Sitecore.SessionProvider.Sql"

 connectionStringName="session"

 pollingInterval="2"

 compression="true"

 sessionType="private"/>

 </providers>

</sessionState>

Configuration options:

Setting Description

connectionStringName

For example:
connectionStringName="session"

Edit the connection string so that the session provider
connects to the SQL Server database that you want to

use. In the xDB this database is called session.

Polling interval

For example:
pollingInterval="2"

This is the time interval in seconds that the session
store provider uses to check if any sessions have
expired.

Compression

For example:
compression="true" />

This setting is a Boolean flag that indicates whether to
compress session state data or not. The default value is
true Compressing session state data reduces the
amount of data that you need to transfer between the
database and the Sitecore instance. This may cause
some additional CPU overhead.

sessionType

For example:
sessionType="private"

This value must be set either to private or shared.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 39 of 57

2.8 Configuring Shared Session State

The shared session state store holds data that can be shared by multiple sessions, such as data
related to contacts and devices.

You must always configure shared session state whatever your server configuration. For example,
you could have a single standalone content delivery server, multiple content delivery servers, or a
clustered environment but you always need to configure session state.

Note
Shared session state is not supported on content management servers. On content delivery servers

shared session state must support the SessionEnd event.

A contact can make multiple parallel visits to a web site in which case each visit will have its own
private session state. However, some data may be shared between visits such as device and contact
related information.

Information that may be shared between parallel visits of the same contact is stored in shared session
state. This data is still private to the contact but it is accessible from all current sessions made by the
same contact.

You can use either the Sitecore MongoDB or Sitecore SQL Server providers to configure your shared

session state store. Both these providers support the SessionEnd event, which the xDB needs to

track website visits.

Note
The standard SQL Server session state provider that is shipped with ASP.NET does not support the
SessionEnd event so cannot be used with the xDB.

You can configure shared session state to use any session state store provider that extends the

abstract class SessionStateStoreProviderBase (shipped with ASP.NET). The only additional

requirement is that the session state store provider can invoke the SessionEnd event via

SessionStateItemExpireCallback.

2.8.1 Configuring the MongoDB Session State Provider

Follow the steps in this section to use a MongoDB database as your shared session state store using
the Sitecore ASP.NET Session State Provider for MongoDB.

Deploying the MongoDB Session Database

To configure the Sitecore ASP.NET Session State Provider for MongoDB:

1. Install MongoDB database server version 2.6 or later. We recommend that you install this on
a dedicated server.

2. Configure Sitecore to use the Sitecore ASP.NET Session State Provider for MongoDB (see
the instructions in this section).

Configuring Sitecore

To configure the Shared Session State Provider for MongoDB:

1. Open the ConnectionStrings.config file located here

<sitename>\Website\App_Config and add the following connection string:

<add name="sharedsession"

connectionString="mongodb://_mongo_server_name:_port_number/_session_database_name" />

2. In your website root folder, navigate to:

Website\App_Config\Include

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 40 of 57

3. Open the Sitecore.Analytics.Tracking.config file.

4. Locate the line where you have defined the default shared session state provider. Navigate to

the following path: sitecore/tracking/sharedSessionState.

5. The default shared session store uses inProc provider (storing data in memory and

implemented in the internal ASP.NET class InProcSessionStateStore):

<sharedSessionState defaultProvider="inProc">

 <providers>

 <clear/>

 <add name="inProc" type="System.Web.SessionState.InProcSessionStateStore" />

 </providers>

Note
For clustered environments, Sitecore ships with a MongoDB session state store provider.

6. In Sitecore.Analytics.Tracking.config file, update the sessionState section as

follows

To configure MongoDB as your shared session state store provider change the

defaultProvider from inProc to mongo. Also, change the name attribute value to mongo.

<sharedSessionState defaultProvider="mongo">

 <providers>

 <clear/>

 <add

 name="mongo"

 type="Sitecore.SessionProvider.MongoDB.MongoSessionStateProvider,

 Sitecore.SessionProvider.MongoDB"

 connectionStringName="sharedsession"

 pollingInterval="2"

 compression="true"

 sessionType="shared"/>

 </providers>

Configuration options:

Setting Description

connectionStringName

For example:
connectionStringName="sharedsession"

Edit the connection string so that the session
provider connects to the MongoDB database that
you want to use. In the xDB this database is

called session.

Polling interval

For example:
pollingInterval="2"

This is the time interval in seconds that the
session store provider uses to check if any
sessions have expired.

Compression

For example:
compression="true" />

This setting is a Boolean flag that indicates
whether to compress session state data or not.
The default value is true. Compressing session
state data reduces the amount of data that you
need to transfer between the database and the
Sitecore instance. This may cause some
additional CPU overhead.

sessionType

For example:
sessionType="shared"

This value must be set either to private or
shared.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 41 of 57

2.8.2 Configuring the SQL Server Session State Provider

Follow the steps in this section to use a SQL Server database as your shared session state store
using the Sitecore ASP.NET Session State Provider for SQL Server.

Deploying the SQL Server Session Database

1. Use Microsoft SQL Server Management Studio 2012 or later to deploy your shared session
store database. For more detailed instructions, see Deploying the SQL Server Session
Database.

2. Provide an appropriate name for your session database. For example, sharedsession.

Configuring Sitecore

To configure the shared session state provider for SQL Server:

1. Add the following connection string to ConnectionStrings.config:

<add name="sharedsession" connectionString="user

id=_sql_server_user_;password=_user_password_;Data

Source=_sqlserver_;Database = _sharedSession_database_name_"/>

2. In your website root folder, navigate to:

Website\App_Config\Include

3. Open the Sitecore.Analytics.Tracking.config file.

4. Locate the line where you have defined the default shared session state provider. Navigate to

the following path: sitecore/tracking/sharedSessionState.

5. To configure SQL Server as your shared session state store provider change the

defaultProvider from inProc to mssql. Also, change the name attribute value to mssql.

<sharedSessionState defaultProvider="mssql">

 <providers>

 <clear/>

 <add

name="mssql"

type="Sitecore.SessionProvider.Sql.SqlSessionStateProvider,Sitecore.SessionProv

ider.Sql"

connectionStringName="sharedsession"

pollingInterval="2"

compression="true" sessionType="shared"/>

 </providers>

Configuration options:

Setting Description

connectionStringName

For example:
connectionStringName="sharedsession"

Edit the connection string so that the session
provider connects to the SQL Server database
that you want to use. In the xDB this database is

called sharedsession.

Polling interval

For example:
pollingInterval="2"

This is the time interval in seconds that the
session store provider uses to check if any
sessions have expired.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 42 of 57

Setting Description

Compression

For example:
compression="true" />

This setting is a Boolean flag that indicates
whether to compress session state data or not.
The default value is true Compressing session
state data reduces the amount of data that you
need to transfer between the database and the
Sitecore instance. This may cause some
additional CPU overhead.

sessionType

For example:
sessionType="shared"

This value must be set either to private or
shared.

For more information on session state, see the xDB Overview and Architecture document.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 43 of 57

2.9 Clustered Environment Overview

A clustered environment consists of a collection of dedicated servers grouped together to improve
scalability. For example, you could create multiple content delivery clusters to enable horizontal
scaling with the aim of increasing storage capacity and improving performance. Each cluster could
contain two or more content delivery instances, each with its own dedicated session state server. You
could also group clusters together in the same location or spread them across different geographical
locations.

In a clustered environment, the same cluster of web servers should serve all the visits for a single
contact. This ensures that all visits have fast access to the current state of the contact. If a single
contact opens multiple concurrent sessions from different browsers or devices then the xDB ensures
that each session sticks to the same cluster. A contact can only move to another cluster once they
end all their current open sessions and start a new one or when the session expires.

To ensure that contacts stick to the same cluster (as mentioned above) each cluster should have a
shared session state server, as shown in the following diagram.

In this diagram, Device 1 is the first device the contact uses to connect to the website. This session is
still active when the same contact begins a second parallel visit using Device 2.

When a contact record is loaded into the shared session state of a cluster, the collection database
locks it and allocates it to the current cluster. This ensures that a contact record is not loaded into two
clusters at the same time.

For more detailed information on creating clustered environments, see the Sitecore scaling
documentation on SDN.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 44 of 57

Chapter 3

Cloud Configuration Options

You can deploy Sitecore partly or entirely in the cloud. This chapter outlines some of
the advantages and disadvantages of using the cloud and how you should approach
making your first cloud deployment.

This chapter contains the following sections:

 Cloud Server Solutions

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 45 of 57

3.1 Cloud Server Solutions

You can choose to install Sitecore xDB as an entirely on-premise solution, a partly on-premise
solution, partly in the cloud (hybrid) or entirely in the cloud.

Sitecore xDB Cloud Edition is a service that enables you to run Sitecore xDB entirely in the cloud.
This includes the following:

 Sitecore application servers for processing, aggregation and reporting.

 Microsoft SQL Server reporting database

 MongoDB collection database

The following table summarizes the on-premise and cloud solution options for Sitecore xDB and how
they can be combined:

Available xDB on-premises xDB Cloud
Edition

Sitecore CEP 7.2 (on-premises) No No

Sitecore® XP 7.5 (on-premises) Yes Yes

Sitecore® XP 7.5 (deployed using Sitecore Azure 7.5) No Yes

There are several other cloud offerings currently available to choose from, each with their own set of
advantages and disadvantages. Think carefully before choosing a cloud platform other than Sitecore.
Other current offerings include Rackspace, and Amazon Web Services (AWS) that both offer public
cloud computing services for a fee.

Benefits of using Sitecore xDB Cloud Edition:

 Powerful, scalable, and fully managed – saves the cost of acquiring, configuring, and
maintaining the infrastructure to support xDB on the premises.

 Easy to connect to, simple to set up and use.

 Low cost.

 Highly available and backed by SLA guarantees.

 Globally available.

 Easy to increase the number of servers.

 Available for production and non-production usage. Non-production instances are provided for
development and testing.

For more information on using the Sitecore xDB Cloud Edition, see xDB Cloud Quick Start Guide on
SDN or contact your local Sitecore office.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 46 of 57

Chapter 4

Customization

This chapter explains the steps you need to follow to create and implement a custom
aggregation pipeline.

This chapter includes the following sections:

 Creating a Custom Aggregation

 Fact and Dimension Tables

 Creating Dimension Tables

 Implementing Model Classes

 Implementing the Aggregation Processor

 Example Custom Aggregation

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 47 of 57

4.1 Creating a Custom Aggregation

In the xDB, aggregation describes a type of processing that reduces and adapts data from the
collection database (MongoDB) so that it can be stored in the reporting database (SQL Server).
Aggregated collection data is then made available to reporting applications such as the Executive
Insight Dashboard and Engagement Analytics reports. Ideally, the aggregation server should be a
dedicated Sitecore CMS server with the client removed.

You can create your own custom aggregations by extending the aggregation pipeline, for example
you could create a custom aggregation for website visitors to rate blog posts by adding their own star
ratings. This example is described in Section 4.5 Example Custom Aggregation.

The purpose of this document is to describe the general steps required to implement a new
aggregation processor.

Summary of steps:

 Create the required database tables

 Create the stored procedures (optional)

 Implement the model classes

 Implement and configure the pipeline

 Implement a script builder (optional)

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 48 of 57

4.2 Fact and Dimension Tables

Fact tables contain the measurements and metrics of the process you are monitoring.

Metrics could be the engagement value accumulated during a visit or the number of events generated
during a page request. When creating reports, it is often necessary to investigate and compare facts
with different attributes. For example, compare the performance of a campaign over the last few
months with its current performance. The attributes used in this example are the months and the
campaign. These allow us to filter out the two sets of facts we want to compare with each other.

If the storage requirements of an attribute are large or it is repeated for many visits, we may choose to
put it into a separate table. These separate tables are referred to as dimensions.

There is a fact table for each report, and each fact table can have zero or more dimension tables
connected to it. This means that if you create a new report, you typically need to create a new fact
table to support it. See the section Creating Fact Tables for the script you need to create fact tables.

Dimension tables can be shared among fact tables. This means that if two fact tables include the
same Item ID attribute, they can both refer to the same Items dimension.

Decide if you need to create any new dimension tables and if so, first check whether they are already
present. The most common dimension tables are already defined in the reporting database along with
the fact tables. The stored procedures and the model classes for these may also be present already.

The most common dimension tables are:

 Site Names

 Device Names

 Languages

 Campaigns

 Items

 Keywords

 Referring Sites

When you have decided which fact and dimension tables you need for your custom aggregations,

then create a script for each fact and dimension table which should be placed in its own .sql file.

4.2.1 Creating Fact Tables

The following SQL script shows how to define a fact table:

CREATE TABLE [Fact_Name]

(

 [K1] DATATYPE NOT NULL,

 [K2] DATATYPE NOT NULL,

 [Kn] DATATYPE NOT NULL,

 [V1] DATATYPE NOT NULL,

 [V2] DATATYPE NOT NULL,

 [Vn] DATATYPE NOT NULL,

 CONSTRAINT [PK_Fact_Name] PRIMARY KEY CLUSTERED ([K1], [K2], [Kn]),

 CONSTRAINT [FK_Fact_Name_K1] FOREIGN KEY ([K1]) REFERENCES [DimensionName] ([K1]),

 CONSTRAINT [FK_Fact_Name_Kn] FOREIGN KEY ([Kn]) REFERENCES [DimensionName] ([K2])

);

ALTER TABLE [Fact_TableName] NOCHECK CONSTRAINT [FK_Fact_Name_K1];

ALTER TABLE [Fact_TableName] NOCHECK CONSTRAINT [FK_Fact_Name_Kn];

CREATE NONCLUSTERED INDEX [IX_ByK1] ON [Fact_TableName]([K1]);

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 49 of 57

We recommend that you create all foreign key constraints to make dependencies between tables
visible, but we also recommend that you disable them to improve performance.

Note
Microsoft SQL Server has a limitation of 900 bytes for indices, so if the storage requirements of the
data in the key columns exceeds 900 bytes, no primary key can be defined on the table. This is not a
serious problem for fact tables, but it can affect performance under certain conditions. A possible
solution is to extract parts of the key into dimension tables.

Note
A primary key may be clustered or non-clustered. A clustered index defines the physical order of rows
in the table. If no physical order is defined, the table is referred to as a heap. The order in which the
columns are listed in the constraint does matter. As a rule of thumb, put the column with the highest
selectivity first and the one with the lowest selectivity last.

4.2.2 Creating Dimension Tables

Dimension tables are usually simpler than fact tables.

Use the following template for creating dimension tables:

CREATE TABLE [DimensionName]

(

 [K1] DATATYPE NOT NULL,

 [Kn] DATATYPE NOT NULL,

 [A1] DATATYPE NOT NULL,

 [An] DATATYPE NOT NULL,

 CONSTRAINT [PK_DimensionName] PRIMARY KEY CLUSTERED ([K1], [Kn])

);

Note
Dimension tables most often contain simple key-value pairs with a single key column and a single
attribute column.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 50 of 57

4.3 Implementing Model Classes

Both fact and dimension tables consist of one or more key values and one or more aggregated
values. The diagram below shows the classes along with the base classes that represent the in
memory model for the Traffic fact and the Items dimension.

Implementing a Dimension Model Class

To implement a model class for a new dimension:

1. Create a new class that inherits from the

Sitecore.Analytics.Aggregation.Data.Model.DictionaryKey class

(Sitecore.Analytics.Aggregation.dll).

2. Expose all key fields as public properties (get and set).

3. Create a new class that inherits from the

Sitecore.Analytics.Aggregation.Data.Model.DictionaryValue class

(Sitecore.Analytics.Aggregation.dll).

4. Add the required properties.

5. Both the key and the value class must have a public default constructor.

6. Create a new class that inherits from the

Sitecore.Analytics.Aggregation.Data.Model.Dimension<TKey, TValue> class

(Sitecore.Analytics.Aggregation.dll), with a public default constructor.

Implementing a Fact Model Class

Implementing the class model for a fact is very similar to implementing the class model for a
dimension.

To implement a model class for a new fact:

1. Create a new class that inherits from the DictionaryKey class.

2. Expose all key fields as public properties (get and set).

3. Create a new class that inherits from the DictionaryValue class.

4. Add the required properties.

5. Both the key and the value class must have a public default constructor.

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 51 of 57

6. Create a new class that inherits from the

Sitecore.Analytics.Aggregation.Data.Model.Fact<TKey, TValue> class

(Sitecore.Analytics.Aggregation.dll), with a public default constructor.

The constructor of the base class takes a delegate as the one and only argument. This
method is called whenever two values need to be aggregated.

Sample implementation:

internal static TrafficValue Reduce(TrafficValue left, TrafficValue right)

{

 TrafficValue result = new TrafficValue();

 result.Visits = (left.Visits + right.Visits);

 result.Value = (left.Value + right.Value);

 return result;

}

Note
All property types exposed by the key class or the value class need to be serializable. If they

are not then you need to override the GetHashCode() and Equals() methods.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 52 of 57

4.4 Implementing the Aggregation Processor

Follow these steps to implement the aggregation processor:

1. Create a class that inherits from the

Sitecore.Analytics.Aggregation.Pipeline.AggregationProcessor base class

(Sitecore.Analytics.Aggregation.dll).

2. Override the Process(AggregationPipelineArgs args) method. The args parameter

provides access to the interaction to be processed and to all dimensions and all facts.

The interaction can be accessed via the Context property. Dimensions and facts can be

accessed via the following methods:

 MyFact fact = args.GetFact<MyFact>();

 MyDimension dimension = args.GetDimension<MyDimension>();

3. Implement the logic that extracts the information from the aggregation context (the visit in the
example above) and populate the fact and dimensions.

4. Register your processor in the

Sitecore.Analytics.Processing.Aggregation.config file.

The following example shows where you add your own processor in the aggregation
configuration file:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <group groupName="analytics.aggregation">

 <pipelines>

 <interactions>

 <processor type="MyNamespace.MyProcessor, MyAssembly" />

 </interactions>

 </pipelines>

 </group>

 </pipelines>

 </sitecore>

</configuration>

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 53 of 57

4.5 Example Custom Aggregation

There are several aggregations that come with Sitecore and that work out of the box. These are used
by the Executive Insight Dashboard and other components in Sitecore.

If you add new functionality to your website which requires you to extract and present data from the
xDB in a different way, then you can write your own custom aggregation.

Note
We recommend that you follow this approach if the data that you want to extract is from a high
number of interactions or if the extraction process is relatively resource intensive.

4.5.1 Overview

In this chapter you will learn how to create a custom aggregation using an example developed for the
sitecore.net website.

On the sitecore.net website, visitors can rate blog posts by adding their own star ratings. Rating data
can then be used to sort and search through posts.

After you have implemented this custom aggregation you can add the additional option to
search blogs by popularity.

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 54 of 57

This chapter includes all the steps you need to follow and sample code that you can re-use in
your own solution.

Summary of steps to follow:

1. Create a rate page event.

2. Create a new fact table.

3. Implement the model classes.

4. Implement the aggregation processor.

5. Register your custom aggregation in the aggregation configuration file.

4.5.2 Create a Rate Page Event
When a visitor clicks a star to rate the blog post, we want the system to register a new Rate

page event for the current page. The selected value (from 1 to 5) is written to the

CustomValues collection with key DataCode.

Example Rate page event using the Sitecore “Industry insight” blog post:

var eventData = new PageEventData("Rate")

 {

 Data = "Industry Insight",

 DataKey = "{7F84F941-A284-4DF5-9DE9-1B22A387039E}",

 Text = "Rated"

 };

var eventRow = Tracker.Current.Interaction.PreviousPage.Register(eventData);

eventRow.CustomValues["RateValue"] = 5;

4.5.3 Create a Fact Table
For this custom aggregation you need to create one new fact table. Fact tables contain the
measurements of the experience data that you want to aggregate.

The following SQL script defines a fact table for this example:

CREATE TABLE [dbo].[Fact_Rating](

[ItemId] UNIQUEIDENTIFIER NOT NULL,

[Rating] BIGINT NOT NULL,

[Count] BIGINT NOT NULL,

CONSTRAINT [PK_Rating] PRIMARY KEY CLUSTERED ([ItemId])

)

GO

ALTER TABLE [dbo].[Fact_Rating] WITH NOCHECK

ADD CONSTRAINT [FK_Fact_Rating_Items]

FOREIGN KEY([ItemId])

REFERENCES [dbo].[Items] ([ItemId])

GO

ALTER TABLE [dbo].[Fact_Rating] NOCHECK

CONSTRAINT [FK_Fact_Rating_Items]

GO

Where:

 ItemId – blog post ID(item ID in content tree)

 Rating – the total value given by all visitors

 Count – number of visitors who rated the post

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 55 of 57

4.5.4 Create Fact and Dimension Model Classes

To implement a class model for a new dimension, create a new class that inherits from the

DictionaryKey class and expose all key fields as public properties (get and set).

RatingKey.cs

namespace Sitecore.Components.Community.BusinessLayer

{

 using System;

 using Sitecore.Analytics.Aggregation.Data.Model;

 public class RatingKey : DictionaryKey

 {

 public Guid ItemId { get; set; }

 }

}

Create a new class that inherits from the DictionaryValue class and add the required properties.

Both the key and the value class must have a public default constructor. Create a new class that

inherits from the Dimension<TKey, TValue> class, again with a public default constructor.

RatingValue.cs

namespace Sitecore.Components.Community.BusinessLayer

{

 using Sitecore.Analytics.Aggregation.Data.Model;

 public class RatingValue : DictionaryValue

 {

 internal static RatingValue Reduce(RatingValue left, RatingValue right)

 {

 var ratingValue = new RatingValue();

 ratingValue.Count = left.Count + right.Count;

 ratingValue.Rating = left.Rating + right.Rating;

 return ratingValue;

 }

 public long Rating { get; set; }

 public long Count { get; set; }

 }

}

RatingFact.cs

namespace Sitecore.Components.Community.BusinessLayer

{

 using Sitecore.Analytics.Aggregation.Data.Model;

 public class Rating : Fact<RatingKey, RatingValue>

 {

 public Rating() : base(RatingValue.Reduce)

 {

 }

 }

}

4.5.5 Implementing the Aggregation Processor
Create a class that inherits from the AggregationProcessor base class. Implement the

OnProcess(AggregationPipelineArgs args) method that is defined as an abstract

method in the base class.

AggregationProcessor.cs

namespace Sitecore.Components.Community.BusinessLayer

{

Sitecore 7.5

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 56 of 57

 using System;

 using System.Linq;

 using Sitecore.Analytics.Aggregation.Pipeline;

 using Sitecore.Analytics.Model;

 using Sitecore.Diagnostics;

 public class RatingProcessor : AggregationProcessor

{

 private Guid RatePageEventDefinitionId = Guid.Parse("08E50AA5-E5E7-4845-940B-

2E81FB3ED56C");

 protected override void OnProcess(AggregationPipelineArgs args)

 {

 Assert.ArgumentNotNull(args, "args");

 if (args.Context.Visit.Pages == null)

 {

 return;

 }

 foreach (PageData page in args.Context.Visit.Pages)

 {

 if (page.PageEvents != null)

 {

 var fact = args.GetFact<Rating>();

 foreach (var pageEvent in page.PageEvents.Where(p => p.PageEventDefinitionId

 == RatePageEventDefinitionId))

 {

 int rating = GetRating(pageEvent);

 var postId = GetPostId(pageEvent);

 if (rating > 0 && postId != Guid.Empty)

 {

 var ratingKey = new RatingKey();

 ratingKey.ItemId = postId;

 var ratingValue = new RatingValue();

 ratingValue.Count = 1;

 ratingValue.Rating = rating;

 fact.Emit(ratingKey, ratingValue);

 }

 }

 }

 }

 }

 private int GetRating(PageEventData pageEvent)

 {

 int rating = 0;

 if (pageEvent.CustomValues.ContainsKey("RateValue"))

 {

 rating = (int)pageEvent.CustomValues["RateValue"];

 }

 return rating;

 }

 private Guid GetPostId(PageEventData pageEvent)

 {

 if (!string.IsNullOrEmpty(pageEvent.DataKey))

 {

 Guid postId;

 if (Guid.TryParse(pageEvent.DataKey, out postId))

 {

 return postId;

 }

 }

 return Guid.Empty;

 }

 }

}

xDB™ Configuration Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 57 of 57

4.5.6 Registering your Custom Aggregation

To ensure that your processor is actually executed, you need to add it to a configuration file and save

it to the App_Config/Include folder. Create a new configuration file for this purpose called

Rating.Aggregation.config.

The following example illustrates where you add you custom aggregation in the

Rating.Aggregation.config file:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <group groupName="analytics.aggregation">

 <pipelines>

 <interactions>

 <processor

type="Sitecore.Components.Community.BusinessLayer.RatingProcessor,

Sitecore.Components.Community" />

 </interactions>

 </pipelines>

 </group>

 </pipelines>

 </sitecore>

</configuration>

Note
When you try out the example remember to update your type and assembly names if they are not
using the same namespace or assembly.

	Chapter 1 Introduction
	1.1 Architecture Options
	1.1.1 On-Premise Server Solutions
	1.1.2 Hybrid Server Solutions
	1.1.3 Cloud Server Solutions

	Chapter 2 Standard Configuration
	2.1 Hardware Guidelines
	2.1.1 Hardware Configuration Example from Sitecore.net
	RAM
	Hard Disk

	2.2 Software Recommendations
	2.3 Installation
	2.3.1 Install Sitecore CMS
	2.3.2 Install Microsoft SQL Server
	2.3.3 Install MongoDB
	MongoDB Considerations
	MongoDB Installation
	Configuring MongoDB as a Service
	Connecting to MongoDB

	2.4 Configuring Connection Strings
	Sitecore Experience Platform Connection Strings
	2.4.1 Verifying a Connection to the Collection Database

	2.5 Server Configuration
	2.5.1 Server Features
	2.5.2 Server Configuration Examples
	Content Delivery Server
	Content Management Server
	Processing Server
	Reporting Service Server
	Collection Database Server (xDB)
	Session Database Server
	Reporting Database Server

	2.6 Session State
	2.6.1 In Process
	2.6.2 Out of Process
	2.6.3 Session State Configuration Scenarios
	Single Sitecore Server
	Single Content Delivery Server and a Separate Content Management Server
	Content Delivery Cluster with a Sticky Load Balancer
	Content Delivery Cluster with a Non-Sticky Load Balancer

	2.7 Configuring Private Session State
	2.7.1 Configuring the MongoDB Session State Provider
	MongoDB Hardware Considerations
	Deploying the MongoDB Session Database
	Configuring Sitecore

	2.7.2 Configuring the SQL Server Session State Provider
	Deploying the SQL Server Session Database
	Configuring Sitecore

	2.8 Configuring Shared Session State
	2.8.1 Configuring the MongoDB Session State Provider
	Deploying the MongoDB Session Database
	Configuring Sitecore

	2.8.2 Configuring the SQL Server Session State Provider
	Deploying the SQL Server Session Database
	Configuring Sitecore

	2.9 Clustered Environment Overview

	Chapter 3 Cloud Configuration Options
	3.1 Cloud Server Solutions

	Chapter 4 Customization
	4.1 Creating a Custom Aggregation
	4.2 Fact and Dimension Tables
	4.2.1 Creating Fact Tables
	4.2.2 Creating Dimension Tables

	4.3 Implementing Model Classes
	4.4 Implementing the Aggregation Processor
	4.5 Example Custom Aggregation
	4.5.1 Overview
	4.5.2 Create a Rate Page Event
	4.5.3 Create a Fact Table
	4.5.4 Create Fact and Dimension Model Classes
	4.5.5 Implementing the Aggregation Processor
	4.5.6 Registering your Custom Aggregation

