
Staging Module

Installation and
Configuration Guide
Installation and configuration advice for administrators and developers

Sitecore Staging Module Installation Guide Page 2 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Contents

Chapter 1 Introduction 3
1.1 This Document 3
1.2 Features 3
1.2.1 Major differences between Staging for Sitecore 4 and Staging for Sitecore 6 3
1.2.2 Defining terms 3
1.2.3 Principle and relations 4
1.2.4 What triggers a Staging? 5

Chapter 2 Installation Guide – MS SQL Databases 6
2.1 Master Web Server 6
2.1.1 Set Up Publish Targets 6
2.2 Slave Web Server 8
2.2.1 Web.config changes 9

Chapter 3 Configuring the Staging Server 10
3.1 Add New Staging Servers 10
3.2 Creating Upload and Download Operations 13

Chapter 4 The Staging Console 15
4.1 Finding the Staging Console 15
4.2 The Overview 15
4.3 Table Operations Lists 16

Chapter 5 Frequently Asked Questions 17
5.1 Package Exception 17

Chapter 6 Administration Notes 18
6.1 Transfer New Files Only Functionality 18
6.1.1 Transfer New Files Only When Uploading 18
6.1.2 Transfer New Files Only When Downloading 18
6.1.3 Transfer New Files Only and Passive Mode 18
6.1.4 Delete Destination Files Before Upload Functionality 19
6.2 SOAP vs. FTP Uploads/Downloads 19
6.2.1 Advantages of the SOAP transfer mode 19
6.2.2 Advantages of the FTP transfer mode 19
6.2.3 Important Notes 19
6.2.4 Performance Comparison 20
6.3 Changing Staging Working Directory 20
6.4 Advanced configuring staging slave servers 21

Chapter 7 Troubleshooting 22
7.1 Is the StagingAgent scheduled task being run at all? 22
7.2 Check the Staging log file 22
7.3 Using SOAP: Is the web service properly installed on slave web servers? 22
7.4 Check Sitecore log file on Runtime 23
7.5 Check the language nodes 23
7.6 Logfile throwing "Error clearing cache: EOF in header" 23

Sitecore Staging Module Installation Guide Page 3 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 1

Introduction

The main purpose of the Sitecore Staging module is to update two or more Sitecore installations

across a firewall.

1.1 This Document

Thus document contains the following chapters

 Chapter 1 – Introduction

 Chapter 2 – Installation Guide – MS SQL Databases

 Chapter 3 – Configuring the Staging Server

 Chapter 4 – User Guide

 Chapter 5 – Frequently Asked Questions

 Chapter 6 – Administrator Notes

 Chapter 7 - Troubleshooting

1.2 Features

The remainder of this chapter describes the features implemented by the Staging Module

1.2.1 Major differences between Staging for Sitecore 4 and Staging for Sitecore 6

Sitecore CMS 6 is by default capable of publishing to several databases. This is known as

“publishing targets”, and a publishing target is simply the name and address of a Sitecore web

database.

The Staging for Sitecore CMS 6 is therefore only a module that handles file transfers and

emptying the cache of the slave Sitecore so that the website is capable of reflecting the web

database update.

1.2.2 Defining terms

Term Definition

Master Sitecore The local Sitecore where all database updates are performed.

The master Sitecore is usually installed inside the firewall.

Sitecore Staging Module Installation Guide Page 4 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Term Definition

Slave Sitecore A read-only Sitecore installation, usually installed outside the firewall, or

in the DMZ.

The slave Sitecore has no Sitecore client, and is only updated by the master

Sitecore.

Staging operation The process of updating a slave Sitecore database, uploading and

downloading files to/from the slave Sitecore and refreshing the slave

Sitecore web server cache.

File operation The process of uploading or downloading files to/from the slave Sitecore.

Slave web server The IIS where the slave Sitecore is installed. A Staging operation always

begins with clearing the cache of the slave web server.

Publishing targets Used by the Staging as web database targets. A publishing target is the

name of an SQL server type which Sitecore publishing writes its web data.

1.2.3 Principle and relations

The Staging module is installed on the master Sitecore.

The number of publishing targets is defined on the master Sitecore. One or more of these

publishing targets points to the web database of one or more Slave web servers.

One or more staging operations are defined on the master Sitecore.

The operations define the names of one or more slave web servers.

Sitecore Staging Module Installation Guide Page 5 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

For each staging operation, the number of file operations is defined, each upload or download

filed to or from the slave web server is defined in the Staging operation.

Note: The writing of data to the publishing target has nothing to do with the Staging operation as

such. A publishing target is the default way of writing web data to a database in Sitecore CMS 6.

The difference between a standard Sitecore CMS 6 installation and a staged environment is

therefore only in the fact that you define not a single, but several web databases. See also the

following chapter “Major differences between Staging for Sitecore 4 and Staging for Sitecore 6”.

1.2.4 What triggers a Staging?

The Sitecore Publish will publish data to all selected languages and publishing targets in turn. If

you have 2 languages and 2 publishing targets, 4 publish operations will be executed.

For each publish operation, an event is fired. Staging hooks into this event, and examines whether

a Staging operation should be executed or not (this is defined by the Staging Server).

If a staging operation is found, a series of work files are written to the master Sitecore. The work

files contain commands to clear web cache and files transmission.

These work files are picked up and executed by the scheduled task. If an execution of a work file

is successful, it is deleted; otherwise not. This ensures that a failed execution will be retried until

successful.

Note: if you want Staging operations to be executed for every language or/and publish target, set

the Target language or/and Publishing target fields of the Staging Server to empty value.

Sitecore Staging Module Installation Guide Page 6 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 2

Installation Guide – MS SQL Databases

This chapter deals with the process of installing the Staging module using MS SQL Databases.

2.1 Master Web Server

Install the staging_master package on your master web server. The Staging module is distributed

as a usual Sitecore package. You can install it using the Installation Wizard available via the

Sitecore desktop link Sitecore » Development Tools » Installation Wizard.

The package installs the /App_config/Include/staging.config file which contains the module

configuration settings.

2.1.1 Set Up Publish Targets

Note: it is highly recommended to use ServerConnections.config when configuring Staging as it

is not always possible to reach a remote database via the FileConnections.config.

In /App_Config directory edit the ConnectionStrings.config file. Set up the following:

Add a connection to a remote web database (the target database for staging) to the

/connectionStrings section. In our example we will just copy the string for the web database and

edit it:

<add name="webtarget" connectionString="user id=user;password=password;Data

Source=server;Database=database" />

Select the connection definition name with care. For example, if you have one slave web server

per publishing target, use the slave server name as a key.

If you have several slave web servers per publishing target, use the SQL server name as a key.

In web.config, set up the following:

1. Add a database node to the /Sitecore/databases section. This can be done by

copying the /Sitecore/databases/database[id=”web”] node and pasting it below.

Change the database id to the connection id defined in the previous step:

 <database id="webtarget" singleInstance="true"

type="Sitecore.Data.Database, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <securityEnabled>true</securityEnabled>

 <dataProviders hint="list:AddDataProvider">

 <dataProvider ref="dataProviders/main" param1="$(id)">

Sitecore Staging Module Installation Guide Page 7 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

 <disableGroup>publishing</disableGroup>

 <prefetch hint="raw:AddPrefetch">

 <sc.include file="/App_Config/Prefetch/Common.config">

 </sc.include>

 <sc.include file="/App_Config/Prefetch/Web.config">

 </sc.include>

 </prefetch>

 </dataProvider>

 </dataProviders>

 <proxiesEnabled>false</proxiesEnabled>

 <proxyDataProvider ref="proxyDataProviders/main" param1="$(id)">

 </proxyDataProvider>

 <cacheSizes hint="setting">

 <children>100KB</children>

 <credentials>100KB</credentials>

 <data>20MB</data>

 <items>10MB</items>

 <parents>100KB</parents>

 <paths>500KB</paths>

 </cacheSizes>

 </database>

2. [Optional] To improve cache clearing performance on slave server, you should

add the history engine to the database definition and the following hook to

web.config file:

<sitecore><configuration>...

<database id=”webtarget”>

...

 <Engines.HistoryEngine.Storage>

 <obj type="Sitecore.Data.$(database).$(database)HistoryStorage,

Sitecore.Kernel">

 <param connectionStringName="$(id)" />

 <EntryLifeTime>30.00:00:00</EntryLifeTime>

 </obj>

 </Engines.HistoryEngine.Storage>

</database>

...

<hooks>

 <hook type="Sitecore.Modules.Staging.InitializeEngines, Staging.Kernel" />

</hooks>

...

</configuration></sitecore>

3. Finally, open the Sitecore shell and add a node to the /system/publish targets

section:

Sitecore Staging Module Installation Guide Page 8 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Enter the connection id defined above in the Target database field.

You should see the newly added database in the database list:

Repeat these steps for each of your publishing targets.

2.2 Slave Web Server

Perform the following actions on the slave web server:

1. Install the Staging web service (staging_slave package) on each slave web server. Refer

to the following link to read about package installation in Sitecore CMS.

2. [Optional] To improve cache clearing performance on slave server, you should add

history engine to the web.config file for the production database (see 2.2.1 chapter in this

guide).

3. If you intend to use FTP as the file transferring method, you should install an FTP server

on the slave web server.

4. Disable the UploadWatcher in the web.config of the Slave Server:

<!-- add type="Sitecore.Resources.Media.UploadWatcher, Sitecore.Kernel"

name="SitecoreUploadWatcher"/ -->

http://sdn5.sitecore.net/End%20User/Package%20Designer/Installation%20Wizard.aspx

Sitecore Staging Module Installation Guide Page 9 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

This change is conditioned by the following fact: if the Slave server has the Master database and

users put or upload files to the /upload folder, the UploadWatcher starts to create media items in

the Master database which is unnecessary.

Proceed to the Configuring Staging Server section when done.

2.2.1 Web.config changes

The staging module has the ability to clear not the entire cache, but only the fragment of the cache

for the data that were changed after publishing from the master server. In order to enable this

feature, the following changes need to be made to the web.config file of the slave server.

1. Open web.config file;

2. Go to configuration>sitecore>databases section;

3. Select the production database element e.g. <database id="web"

singleInstance="true" type="Sitecore.Data.Database, Sitecore.Kernel">;

4. Add the following code under the database element:

 <Engines.HistoryEngine.Storage>
 <obj type="Sitecore.Data.$(database).$(database)HistoryStorage, Sitecore.Kernel">
 <param connectionStringName="$(id)" />
 <EntryLifeTime>30.00:00:00</EntryLifeTime>
 </obj>
 </Engines.HistoryEngine.Storage>

Sitecore Staging Module Installation Guide Page 10 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 3

Configuring the Staging Server

When all web.config changes are done, proceed to configuring the Staging module in the Sitecore

CMS interface.

3.1 Add New Staging Servers

Navigate to the /sitecore/system/staging item, right-click on it and select New » Staging Server:

Each Staging Server item represents one slave server (staging target). The list of the fields

provided by this item is shown below.

Sitecore Staging Module Installation Guide Page 11 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The Data Section

Field Description Sample value

Url The URL of the slave web server

SQLite note: the address must have the

trailing slash.

http://staging_server/

Username The name of any user on the slave web

server. Be sure to use full user name

(domainname\username).

sitecore\admin

Password The password for the Sitecore CMS

client of the specified user

56v23

Timeout The timeout in seconds for the Staging

web service

15

Publishing

target

The publishing target that, combined

with the target language, triggers a

staging operation. See the What triggers

a Staging? Chapter for details.

MS SQL note: the publishing target

specified here should reflect the actual

target database.

webtarget

Target

language

The language that, combined with the

publishing target, triggers a staging

operation. See the What triggers a

Staging? Chapter for details.

Note: this field is empty by default.

en

The Cache Section

Field Description

Cache Determines how the cache should be cleared:

 Partial: Fast. Clears only changed data in caches. Will work only when

the history engine is activated for production database on both master and

slave servers. Please check optional configuration changes for master and

slave servers.

 Full: Slow. Clears all caches.

The FTP Section

Use this section to configure the FTP connection if you plan to transfer files via FTP.

Field Description Sample value

Server The name of the FTP server.

Enter only the name itself in this field

without any slashes or an ftp prefix.

ftpserver

http://sdn5.sitecore.net/SDN5/Products/Staging/Synopsis/What%20triggers%20a%20Staging.aspx
http://sdn5.sitecore.net/SDN5/Products/Staging/Synopsis/What%20triggers%20a%20Staging.aspx
http://sdn5.sitecore.net/SDN5/Products/Staging/Synopsis/What%20triggers%20a%20Staging.aspx
http://sdn5.sitecore.net/SDN5/Products/Staging/Synopsis/What%20triggers%20a%20Staging.aspx

Sitecore Staging Module Installation Guide Page 12 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Field Description Sample value

Port The FTP server port.

Default is 21

880

Username Username for the FTP server. ftpuser

Password Password for the specified user. ftppass

Passive

transfers

If checked, the FTP server will use

passive mode to transfer data

unchecked

Restart on

errors

If checked, the FTP server will restart

the FTP connection automatically on

connection errors

checked

Delete

destination file

before upload

Deletes the existing destination files

before uploading new ones. This flag

also eliminates the “Passive transfers”

feature. For more information, see

the Delete destination file before

upload functionality chapter.

checked

Timeout FTP inactivity time in seconds before

the connection is aborted.

10

Encoding

(FtpEncoding)

Encoding to use when communicating

with the FTP server. This affects the

handling of files and directories with

national (non-ASCII) characters in

names.

Note: When the field is empty, ASCII

encoding is used for communication.

The Finalize Section

This section allows to specify some links, accessing which will report a successful staging

operation or an error.

Field Description

Call URL If checked, the staging will call one of the 2 URLs described below.

Url on Success The URL to call if all of the items scheduled for staging were transferred

successfully.

Url on Error The URL to call if one of the items scheduled for staging was not transferred

successfully.

Sitecore Staging Module Installation Guide Page 13 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

3.2 Creating Upload and Download Operations

In order to upload files to the slave server or download files from it you should define upload and

download operations.

To create upload or download operation, right-click on the Staging Server item and select

New » StagingUpload/StagingDownload.

Let us take a look at the StagingUpload item:

Below is the description of the item’s fields (fields are the same for StagingUpload and

StagingDownload items).

Field Description

Method The preferred file transfer method:

FTP: Use the FTP server defined in the StagingServer item.

SOAP: Use the Staging web service.

See also chapter SOAP vs. FTP Uploads/Downloads.

Default value: SOAP.

http://sdn5.sitecore.net/SDN5/Products/Staging/Installation%20Guide/Setup%20Staging%20on%20Master%20Sitecore/SOAP%20vs%20FTP%20Uploads%20and%20Downloads.aspx

Sitecore Staging Module Installation Guide Page 14 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Field Description

File mask The pattern of files to get from the source folder. Usual shell patterns are

used: question mark (?) means any single symbol, asterisk (*) means any

number of symbols. A mask containing an asterisk only (*) means every

file. Another example is “*.jpeg“. This will get all the images with the JPEG

extension in the directory.

The file mask does not affect any directories. Even if you choose a file mask

other than '*', all directories will be uploaded if you choose “Recursive”.

Local directory Directory on the master web server. The path can be physical or logical.

Examples:

/App_Data/MediaFiles/upload/

D:\Sitecore\upload\

Remote directory Directory of the slave web server. The directory can only be logical.

Example: /upload/

Recursive If true, Staging will also search for files in subfolders

Transfer new files

only

Also known as UseLastUpdate.

If true, only files which were added since the last publish will be transferred.

See also Transfer new files only functionality.

Sitecore Staging Module Installation Guide Page 15 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 4

The Staging Console

This chapter details the screens found in the staging console

4.1 Finding the Staging Console

The Staging console can be found under All Applications » Staging:

4.2 The Overview

The Staging console shows an overview of the current activity and pending staging operations:

Sitecore Staging Module Installation Guide Page 16 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Pending Value

Clear cache files Number of clear cache operations pending

Upload files Number of files to be uploaded

Download files Number of files to be downloaded

Current status The current activity. Will be “idle” if no activity is

currently present

4.3 Table Operations Lists

Furthermore, you can get a list of all operations by clicking on the buttons on the tool bar:

Button Action

View status window (shown above)

View pending clear cache files

View pending upload files

View pending download files

Here is an example of a window showing pending upload files:

The text in red indicates that there has been an error in the upload. To delete the work file (not the

actual file to be uploaded) click on the [Del] button.

Sitecore Staging Module Installation Guide Page 17 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 5

Frequently Asked Questions

This chapter contains answers to frequently asked technical questions concerning the Staging

module.

5.1 Package Exception

Q:

Why is the packager throwing 'UnauthorizedAccessException: Access to the path <*.dll> is

denied'?

A:

Delete any files from /bin. Install and ensure ASP.NET (ASPNET or NETWORK SERVICE) has

full control of that directory, which is used by the packager to avoid recycling the ASP.NET

worker process too early during package installation process.

Sitecore Staging Module Installation Guide Page 18 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 6

Administration Notes

This chapter outlines notes useful to site administrators

6.1 Transfer New Files Only Functionality

This feature allows you to reduce the number of uploaded or downloaded files.

6.1.1 Transfer New Files Only When Uploading

The function will store the time of the last transfer in the Last updated section of the

StagingServer:

When the next uploading is carried out only files that are newer than this date will be uploaded.

If you wish to upload all files again, simply delete the value of Last updated field and save the

item. Next time you use the module all files will be uploaded again.

6.1.2 Transfer New Files Only When Downloading

Since the time on the FTP can be different from that of your Sitecore CMS server, storing the

time of the last download operation will have no effect.

Instead, when downloading, each downloaded file will have its timestamp changed to that of the

file on the FTP server.

Next time the module attempts to download the same file, the dates are compared and the file is

downloaded only if the file on the FTP server is newer than the file on the master server.

6.1.3 Transfer New Files Only and Passive Mode

There is a minor difference between Transfer New Files Only functionality and Passive Mode

transferring.

Passive mode is controlled by the FTP server and will reject uploading or downloading of files

unless their size has been changed. The content and modification dates of the files are ignored.

Transfer New Files Only functionality compares the file modification dates, not file sizes.

Sitecore Staging Module Installation Guide Page 19 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Take a look at the following example:

Consider a .gif image representing a blue bullet. A user changes the color from blue to red. The

size of the image will not be changed, but the modified date will.

In passive mode, the file will not be uploaded because the file size is the same.

6.1.4 Delete Destination Files Before Upload Functionality

This feature will delete any existing files on the FTP server before uploading new files.

This eliminates the replace/append problem on certain FTP servers. The problem has the

following symptoms:

If the new file is smaller than the original file it is written on disk starting from the beginning of

the original file, leaving the last part of the original file in the end of the new one.

Also, some FTP servers will only append new text to the end of the original file, leaving the first

part intact. This is more frequent when using passive transfer mode.

Please note that if you set this option to true, the Staging module will run substantially slower.

Only use this setting if you experience any of the problems described above.

Also, when using this feature, “passive mode” has no effect on the existing files.

6.2 SOAP vs. FTP Uploads/Downloads

The Staging module has a feature for transmitting files via a web service rather than FTP server.

The pros and cons of the two modes are described below.

6.2.1 Advantages of the SOAP transfer mode

 No need for setting up an FTP server on the slave web server

 No need for opening additional ports. The web service uses the HTTP or HTTPS port.

 Secure transmission is possible by using an HTTPS connection.

 Faster transmission of files smaller than 1.5 Mb.

6.2.2 Advantages of the FTP transfer mode

 Standard way of transmitting files.

 Faster transmission of files larger than 1.5 Mb.

6.2.3 Important Notes

If you need to update files in the /bin folder from Master to Slave server, you should do this either

manually via FTP or use FTP upload mode but not SOAP mode. If the SOAP mode is used,

Sitecore uploads files using a remote web service that is located on the Slave server. The

architecture of ASP.NET and .NET Framework is such that if any DLL is updated in the /bin

folder of the Slave server, ASP.NET worker process is restarted which makes the Slave server

inaccessible for some time and breaks the upload process. When the FTP mode is used instead of

SOAP mode, all files are uploaded without problems but the ASP.NET worker process of the

Slave server is restarted anyway. If there are Extranet logged in users, they will lose their session

because of the ASP.NET restarting.

Sitecore Staging Module Installation Guide Page 20 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

6.2.4 Performance Comparison

The graph below shows the file transmission time against file size. X-axis represents file size in

bytes; Y-axis represents transmission time in milliseconds:

Uploading of files smaller than 1.5 Mb is faster with the SOAP mode, but the FTP mode becomes

increasingly faster for files larger than 1.5 Mb.

6.3 Changing Staging Working Directory

After the Staging installation a folder called /Sitecore modules/staging/workdir is created and

used as the module’s working directory. The directory contains the following:

 Status.xml – a file containing the current status of the module.

 stagingYYYYMMDD.log.txt - staging log files.

 One directory for each StagingServer configuration.

Each staging server configuration directory contains the following:

 Settings.xml – a file containing all StagingServer settings.

 Cache – a folder containing work files for clearing cache.

 Download - a folder containing work files for downloading operations.

 Upload - a folder containing work files for uploading operations

Below is the example of an upload work file:

<?xml version="1.0" encoding="utf-8"?>

<root server="StagingServer" doctype="upload" action="put"

initiator="StagingServer.StagingUpload" method="FTP">

 <local>D:\SITECORE\WEBSITE\APP_DATA\MEDIAFILES\FILES\STAGING5_4.JPG</local>

 <remote>/upload/STAGING5_4.JPG</remote>

</root>

Work files are created in the appropriate folders for every upload, download and cache clearing

operation defined under the Staging Server item:

Sitecore Staging Module Installation Guide Page 21 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

The Staging agent defined in the <scheduling> section of web.config monitors those folders and

executes the tasks defined in the work files. If a task completed successfully, the corresponding

work file is deleted. Otherwise the file is left unchanged and is processed upon the next agent

iteration.

To change the working directory, add the following to your /Sitecore/settings section of your

web.config:

<Setting.name=”stagingWorkDir” value=”_yourpath_”/>

Change “yourpath” to an appropriate logical or physical path. Make sure that the ASPNET user

(Network Service user in Windows 2003) has 'write' permission on the /sitecore modules folder.

6.4 Advanced configuring staging slave servers

The slave servers often may be configured with non-default values e.g. web database has non

standard name or content delivery server doesn’t contain any shell part of the Sitecore. In this

case the default context references of the Staging module should be changed. For this purpose the

following settings can be added to the web.config file of the slave servers:

- stagingWebDatabase - specify the name of the web database of the slave server if

it differs from the default one (web);

- stagingSiteContext – specify the name of the site to be used as context site; this is

needed when there is no shell part on the content delivery server (there is no shell

site).

Sitecore Staging Module Installation Guide Page 22 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Chapter 7

Troubleshooting

In this chapter is a list of troubleshooting tips in case the items and files are not synchronized

when publishing.

7.1 Is the StagingAgent scheduled task being run at all?

Open the sitecore log file and check that it contains entries for the StagingAgent.

If the logfile doesn't contain any StagingAgent entries (or only very few of them), check the

<frequency> setting in the <scheduling> section of the master web server's web.config file (as

mentioned in the Staging module installation guide). The default frequency is

<frequency>00:10:00</frequency> meaning that it can last up to 10 minutes after invoking the

publish action until the StagingAgent task (which performs the file upload) is invoked by

Sitecore.

7.2 Check the Staging log file

Open the log file in "/sitecore modules/staging/workdir" on the master web server (or the

directory specified in the "StagingWorkDir" setting in web.config).

If no logfile is generated, either the module is not installed correctly or the asp.net process doesn't

have write access to the working directory.

The logfile contains useful information about file synchronisation including error messages that

can indicate various problems (such as being unable to contact the slave server due to the slave

server's host name not being found, or being unable to call the web service on the slave web

server).

7.3 Using SOAP: Is the web service properly installed on slave web servers?

Try to access the following URL on each of the slave web servers (replace "example.com" in the

address with the hostname/URL that you have specified for the slave in the StagingServer item in

Sitecore):

http://example.com/sitecore%20modules/staging/service/api.asmx

This should bring up a list of available SOAP methods.

If this is not the case, check that the file "api.asmx" exists in the "/sitecore

modules\staging\service" folder on the slave server. If the file does not exists, make sure the

ASPNET (and possibly IIS_xxx) user (Network Service user in Windows 2003) has write access

to the "/sitecore modules" folder and try to reinstall the Staging_slave.zip package.

http://example.com/sitecore%20modules/staging/service/api.asmx
http://example.com/sitecore%20modules/staging/service/api.asmx

Sitecore Staging Module Installation Guide Page 23 of 23
Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

7.4 Check Sitecore log file on Runtime

Check the Sitecore logfile on the runtime server to see if any errors are logged regarding staging.

No images/files being uploaded?

If the log file doesn't contain entries about any file/image uploads, try the following:

 Check the scheduling frequency (as mentioned above)

 If changing the scheduling frequency doesn't work, go to the "Housekeeping" section of

the "StagingServer" item that is parent to the "StagingUpload" that isn't working as

expected. Remove the value in the "Last updated" field, save the item and republish.

 Finally go to the "StagingUpload" item and temporarily remove the checkmark from

"Transfer new files only" and republish.

7.5 Check the language nodes

This information applies to Sitecore CMS 6:

 Check that the "Iso Code" field is filled out correctly for all the languages below (all the

nodes below /sitecore/system/languages in the master database).

The Staging module use the information in the "Iso Code" field when determining if a publish

operation should trigger a staging action. If the "Iso Code" is not filled out (or is filled out

incorrectly), the staging will never be triggered.

7.6 Logfile throwing "Error clearing cache: EOF in header"

You probably have the dataMigrationWizard installed. If you do, the staging will not work until

you disable it.

You need to disable the following section in your web.Config the ClearCache call probably will

work again.

<webServices>

 <soapExtensionTypes>

 <add type = "

TransferProtocol.SoapExtensions.SoapArchiveExtension,TransferProtocol " priority

= " 1 " group = " 0 " />

 </soapExtensionTypes>

</webServices>

	Introduction
	This Document
	Features
	Major differences between Staging for Sitecore 4 and Staging for Sitecore 6
	Defining terms
	Principle and relations
	What triggers a Staging?

	Installation Guide – MS SQL Databases
	Master Web Server
	Set Up Publish Targets

	Slave Web Server
	Web.config changes

	Configuring the Staging Server
	Add New Staging Servers
	Creating Upload and Download Operations

	The Staging Console
	Finding the Staging Console
	The Overview
	Table Operations Lists

	Frequently Asked Questions
	Package Exception

	Administration Notes
	Transfer New Files Only Functionality
	Transfer New Files Only When Uploading
	Transfer New Files Only When Downloading
	Transfer New Files Only and Passive Mode
	Delete Destination Files Before Upload Functionality

	SOAP vs. FTP Uploads/Downloads
	Advantages of the SOAP transfer mode
	Advantages of the FTP transfer mode
	Important Notes
	Performance Comparison

	Changing Staging Working Directory
	Advanced configuring staging slave servers

	Troubleshooting
	Is the StagingAgent scheduled task being run at all?
	Check the Staging log file
	Using SOAP: Is the web service properly installed on slave web servers?
	Check Sitecore log file on Runtime
	Check the language nodes
	Logfile throwing "Error clearing cache: EOF in header"

